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𝒫 = {𝒑1, … , 𝒑𝑁𝑣}, 𝒑𝑖 =

𝑥𝑖
𝑦𝑖
𝑧𝑖

∈ ℛ3

A set of data points in some coordinate system
3D scanners









True Depth Camera



Gray image: pixel represents distance from camera.
Nearer is brighter.

Real capture by Kinect.
Nearer is darker.





Contour line Ω







𝐹 𝑥, 𝑦, 𝑧 > 0

𝐹 𝑥, 𝑦, 𝑧 = 0

𝐹 𝑥, 𝑦, 𝑧 < 0









2D case 3D case





The partitioning rule of the octree is: 
For any octant 𝑂 which is not at the max depth level, subdivide it if the local 
surface 𝑆𝑂 restricted by it is not empty and the Hausdorff distance 𝑑𝐻(𝑆𝑂, 𝑃𝑂)
larger than a predefined threshold. 



Paper: Adaptive O-CNN: A Patch-based Deep Representation of 3D Shapes







triangle mesh quad mesh

𝒑𝑖 =

𝑥𝑖
𝑦𝑖
𝑧𝑖

∈ ℛ3

𝒫 = {𝒑1, … , 𝒑𝑁𝑣}

𝑓𝑖: 𝑣𝑖,1, 𝑣𝑖,2, 𝑣𝑖,3

𝑒𝑗: 𝑣𝑗,1, 𝑣𝑗,2

Graph





𝑃: a set of vertices



Non-manifold vertex is generated by pinching two surface 
sheets together at that vertex such that the vertex is incident 
to more than one fan of triangles.

Non-manifold edge has more 
than two incident triangles.



𝑔 = 0 𝑔 = 1 𝑔 = 2



𝑔𝑖

𝑔𝑗
𝑔𝑘

𝑔

𝑔 = 𝛼𝑔𝑖 + 𝛽𝑔𝑗 + 𝛾𝑔𝑘
𝛼 + 𝛽 + 𝛾 = 1,
𝛼, 𝛽, 𝛾 ≥ 0 .

𝛼 =
𝑠𝑖

𝑠𝑖 + 𝑠𝑗 + 𝑠𝑘
𝑠𝑖: area of the green triangle



A collection of tetrahedronsOne tetrahedron



𝑣𝑖

𝑣𝑖,1

𝑓𝑗

𝑣𝑖,2

𝑣𝑖,3

𝑣𝑖,4

𝑣𝑖,5

𝑒𝑘







𝑓𝑗 𝑓𝑗
𝑓𝑗

One halfedge of 𝑓𝑗 Next halfedge Next halfedge



One outgoing halfedge Opposite halfedge Next halfedge













Discrete differential geometry
Xiao-Ming Fu



Goal

• Compute approximations of the differential properties of this 
underlying surface directly from the mesh data.

• Local Averaging Region

• Normal Vectors

• Gradients

• Laplace-Beltrami Operator

• Discrete Curvature



Local Averaging Region

• General idea: spatial averages over a local 
neighborhood Ω(𝒙) of a point 𝒙.

• 𝒙: one mesh vertex

• Ω(𝒙): n-ring neighborhoods of mesh vertex 
or local geodesic balls.

• The size of the Ω(𝒙): stability and accuracy
• Large size: smooth
• Small size: accurate for clean mesh data

𝒙



Local Averaging Region

triangle barycenters
edge midpoints

triangle barycenters
→ triangle circumcenter 

circumcenter for obtuse 
triangles → edge midpoints



Implementation thinking

• How to compute the area of local average region? For example, 
barycentric cell.

• One simple idea: for each vertex, compute the area directly.

• Any improvement?

• How about Voronoi cell and mixed Voronoi cell?



Normal Vectors

• Normal vectors for individual triangles are well-defined.

• Vertex normal: spatial averages of normal vectors in a local one-ring 
neighborhood.

𝒏 𝑣 =
σ𝑇∈Ω 𝑣 𝛼𝑇𝒏 𝑇

σ𝑇∈Ω 𝑣 𝛼𝑇𝒏 𝑇
2

1. constant weights: 𝛼𝑇 = 1

2. triangle area: 𝛼𝑇 = area(𝑇)

3. incident triangle angles: 𝛼𝑇 = 𝜃(𝑇)



Implementation thinking

• How to compute the normal on triangles or vertices? 



Barycentric coordinate

𝑔𝑖

𝑔𝑗
𝑔𝑘

𝑔

𝑔 = 𝛼𝑔𝑖 + 𝛽𝑔𝑗 + 𝛾𝑔𝑘
𝛼 + 𝛽 + 𝛾 = 1,
𝛼, 𝛽, 𝛾 ≥ 0 .

𝛼 =
𝑠𝑖

𝑠𝑖 + 𝑠𝑗 + 𝑠𝑘
𝑠𝑖: area of the green triangle



Gradients
• Given the function value on vertices, compute the gradient 

on each triangle.

• A piecewise linear function
𝑓 𝒙 = 𝛼𝑓𝑖 + 𝛽𝑓𝑗 + 𝛾𝑓𝑘

• Gradient: 
𝛻𝒙𝑓 𝒙 = 𝑓𝑖𝛻𝒙𝛼 + 𝑓𝑗𝛻𝒙𝛽 + 𝑓𝑘𝛻𝒙𝛾

• Because

𝛼 =
𝐴𝑖
𝐴𝑇

=

𝒙 − 𝒙𝑗 ∙
𝒙𝑘 − 𝒙𝑗

⊥

𝒙𝑘 − 𝒙𝑗 2

𝒙𝑘 − 𝒙𝑗 2

2𝐴𝑇

= 𝒙 − 𝒙𝑗 ∙ 𝒙𝑘 − 𝒙𝑗
⊥
/2𝐴𝑇

𝑓𝑖

𝑓𝑗 𝑓𝑘

𝒙𝑗

𝒙𝑘

𝒙𝑖

𝒙



Gradients

• Then

𝛻𝒙𝛼 =
𝒙𝑘 − 𝒙𝑗

⊥

2𝐴𝑇

𝛻𝒙𝛽 =
𝒙𝑖 − 𝒙𝑘

⊥

2𝐴𝑇

𝛻𝒙𝛾 =
𝒙𝑗 − 𝒙𝑖

⊥

2𝐴𝑇

=>

𝛻𝒙𝑓 𝒙 = 𝑓𝑖
𝒙𝑘 − 𝒙𝑗

⊥

2𝐴𝑇
+ 𝑓𝑗

𝒙𝑖 − 𝒙𝑘
⊥

2𝐴𝑇
+ 𝑓𝑘

𝒙𝑗 − 𝒙𝑖
⊥

2𝐴𝑇

𝑓𝑖

𝑓𝑗 𝑓𝑘

𝒙𝑗

𝒙𝑘

𝒙𝑖

𝒙



Gradients

• Because:

𝒙𝑘 − 𝒙𝑗
⊥
+ 𝒙𝑖 − 𝒙𝑘

⊥ + 𝒙𝑗 − 𝒙𝑖
⊥
= 0

=>

𝛻𝒙𝑓 𝒙 = 𝑓𝑗 − 𝑓𝑖
𝒙𝑖 − 𝒙𝑘

⊥

2𝐴𝑇
+ (𝑓𝑘 − 𝑓𝑖)

𝒙𝑗 − 𝒙𝑖
⊥

2𝐴𝑇

• Consistent with the formula in the book.

𝑓𝑖

𝑓𝑗 𝑓𝑘

𝒙𝑗

𝒙𝑘

𝒙𝑖

𝒙



Gradient

• Constant on each facet.

• Different in different facets
• the signal is 𝐶0

• No definition on vertices.

• If the signal is the positions of the vertices, 
what does the gradient mean?

𝑓𝑖

𝑓𝑗 𝑓𝑘

𝒙𝑗

𝒙𝑘

𝒙𝑖

𝒙



Implementation thinking

• Simple question: 

How to compute 𝒙𝑘 − 𝒙𝑗
⊥

in 3D? 

• How about the gradient in tetrahedral mesh?

𝑓𝑖

𝑓𝑗 𝑓𝑘

𝒙𝑗

𝒙𝑘

𝒙𝑖

𝒙



Laplace-Beltrami Operator
Paper: Discrete Laplace operators: No free lunch
• ∆= −div grad on a smooth surface 𝑆

• (NULL): Δ𝑓 = 0 whenever 𝑓 is constant.

• (SYM) Symmetry: ∆𝑓, 𝑔 𝐿2 = 𝑓, ∆𝑔 𝐿2

• (LOC) Local support: for any pair 𝑝 ≠ 𝑞 of points, ∆𝑓(𝑝) is independent of 𝑓(𝑞).

• (LIN) Linear precision: ∆𝑓 = 0 whenever 𝑆 ∈ 𝑅2 and 𝑓 is linear.

• (MAX) Maximum principle: harmonic functions have no local maxima at interior 
points.

• (PSD) Positive semi-definiteness: the Dirichlet energy 𝐸𝐷 𝑓 = 𝑆׬ grad 𝑓
2

2
𝑑𝐴 =

∆𝑓, 𝑓 𝐿2 is non-negative.



Discrete Laplace-Beltrami Operator
Paper: Discrete Laplace operators: No free lunch

• Discrete Laplace operators on triangular surface meshes span the 
entire spectrum of geometry processing applications:
• mesh filtering, parameterization, pose transfer, segmentation, reconstruction, 

re-meshing, compression, simulation, and interpolation via barycentric
coordinates.

• Constant gradient on facet → zero Laplace value on facet

• Exists on the vertex

• A discrete Laplace operator on vertex-based functions:

L𝑓 𝑖 = ෍

𝑗∈Ω(𝑖)

𝜔𝑖𝑗 (𝑓𝑗 − 𝑓𝑖)



Desired Properties for Discrete Laplace-
Beltrami Operator
• Require a discrete Laplacian having properties corresponding to (some 

subset of) the properties of the continuous Laplace operator:
• NULL

• Δ𝑓 = 0 whenever 𝑓 is constant.

• SYM (SYMMETRY)
• Condition: 𝜔𝑖𝑗 = 𝜔𝑗𝑖
• Real symmetric matrices exhibit real eigenvalues and orthogonal eigenvectors.

• LOC (LOCALITY )
• Condition: Weights are associated to mesh edges, 𝜔𝑖𝑗 = 0 if vertex 𝑖 and 𝑗 do not share an 

edge.
• Smooth Laplacians govern diffusion processes via 𝑢𝑡 = −∆𝑓.

• LIN (LINEAR PRECISION)
• L𝑓 𝑖 = 0 for all interior vertices when the positions of vertices are in the plane.

• Condition: 0 = 𝐿𝒙 𝑖 = σ𝑗𝜔𝑖𝑗(𝒙𝑖 − 𝒙𝑗)

• Applications: de-noising, parameterizations, plate bending energies.



Desired Properties for Discrete Laplace-
Beltrami Operator
• POS (POSITIVE WEIGHTS )

• Condition: 𝜔𝑖𝑗 > 0 whenever 𝑖 ≠ 𝑗.
• A sufficient condition for a discrete maximum principle.
• In diffusion problems, this property assures that flow travels from regions of 

higher to regions of lower potential.
• Establishes a connection to barycentric coordinates.
• Tutte’s embedding theorem: LOCALITY + LINEAR PRECISION + POSITIVE 

WEIGHTS.

• PSD (POSITIVE SEMI-DEFINITENESS)
• Condition: 𝐿 is symmetric positive semi-definite.

• Discrete Dirichlet energy 𝐸𝐷 𝑓 = σ𝑖,𝑗𝜔𝑖𝑗 𝑓𝑖 − 𝑓𝑗
2

.

• SYMMETRY + POSITIVE WEIGHTS → POSITIVE SEMI-DEFINITENESS
• POSITIVE SEMI-DEFINITENESS ↛ POSITIVE WEIGHTS 



Uniform Laplacian

• 𝜔𝑖𝑗 = 1 or 𝜔𝑖𝑗 =
1

𝑁𝑖

L𝑓 𝑖 = σ𝑗∈Ω(𝑖)(𝑓𝑗 − 𝑓𝑖) or L𝑓 𝑖 =
1

𝑁𝑖
σ𝑗∈Ω(𝑖)(𝑓𝑗 − 𝑓𝑖)

• Violate property of LINEAR PRECISION

• The definition only depends on the connectivity of the mesh.

• The uniform Laplacian does not adapt at all to the spatial distribution 
of vertices.



Cotangent Formula

• mixed finite element/finite volume method
• Assume it constant on each vertex

න
𝐴𝑖

∆𝑓𝑑𝐴 = න
𝐴𝑖

div 𝛻 𝑓 𝑑𝐴 = න
𝜕𝐴𝑖

(𝛻 𝑓) ∙ 𝒏 𝑑𝑠

1. 𝐴𝑖 is the local averaging domain of vertex 𝑖.

2. 𝜕𝐴𝑖 is the boundary of 𝐴𝑖.

3. 𝒏 is the outward pointing unit normal of the boundary.

4. 𝑓 is the signal defined on mesh.



Cotangent Formula

We split this integral by considering the integration 
separately for each triangle 𝑇.

න
𝜕𝐴𝑖∩𝑇

𝛻𝑓 ∙ 𝒏𝒅𝒔 = 𝛻𝑓 ∙ 𝒂 − 𝒃 ⊥ =
1

2
𝛻𝑓 ∙ 𝒙𝑗 − 𝒙𝑘

⊥

𝛻𝑓 is constant within each triangle.

𝛻𝑓 = 𝑓𝑗 − 𝑓𝑖
𝒙𝑖 − 𝒙𝑘

⊥

2𝐴𝑇
+ (𝑓𝑘 − 𝑓𝑖)

𝒙𝑗 − 𝒙𝑖
⊥

2𝐴𝑇

න
𝜕𝐴𝑖∩𝑇

𝛻𝑓 ∙ 𝒏𝒅𝒔 = 𝑓𝑗 − 𝑓𝑖
𝒙𝑖 − 𝒙𝑘

⊥ ∙ 𝒙𝑗 − 𝒙𝑘
⊥

4𝐴𝑇

+(𝑓𝑘 − 𝑓𝑖)
𝒙𝑗 − 𝒙𝑖

⊥
∙ 𝒙𝑗 − 𝒙𝑘

⊥

4𝐴𝑇



Cotangent Formula

• Because: 

𝐴𝑇 =
1

2
sin𝛾𝑗 𝒙𝑗 − 𝒙𝑖 𝒙𝑗 − 𝒙𝑘

=
1

2
sin𝛾𝑘 𝒙𝑖 − 𝒙𝑘 𝒙𝑗 − 𝒙𝑘

and

cos𝛾𝑗 =
𝒙𝑗 − 𝒙𝑖 ∙ (𝒙𝑗 − 𝒙𝑘)

𝒙𝑗 − 𝒙𝑖 𝒙𝑗 − 𝒙𝑘

cos𝛾𝑘 =
𝒙𝑖 − 𝒙𝑘 ∙ (𝒙𝑗 − 𝒙𝑘)

𝒙𝑖 − 𝒙𝑘 𝒙𝑗 − 𝒙𝑘
𝛾𝑗

𝛾𝑘



Cotangent Formula

• and

𝒙𝑖 − 𝒙𝑘
⊥ ∙ 𝒙𝑗 − 𝒙𝑘

⊥
= 𝒙𝑖 − 𝒙𝑘 ∙ 𝒙𝑗 − 𝒙𝑘

𝒙𝑗 − 𝒙𝑖
⊥
∙ 𝒙𝑗 − 𝒙𝑘

⊥
= 𝒙𝑗 − 𝒙𝑖 ∙ (𝒙𝑗 − 𝒙𝑘)

So

න
𝜕𝐴𝑖∩𝑇

𝛻𝑓 ∙ 𝒏𝒅𝒔

=
1

2
cot𝛾𝑘 𝑓𝑗 − 𝑓𝑖 + cot𝛾𝑗 𝑓𝑘 − 𝑓𝑖

𝛾𝑗

𝛾𝑘



Cotangent Formula

න
𝐴𝑖

∆𝑓𝑑𝐴 =
1

2
෍

𝑗∈Ω(𝑖)

(cot𝛼𝑖𝑗 + cot𝛽𝑖𝑗)(𝑓𝑗 − 𝑓𝑖)

Discrete average of the Laplace-Beltrami operator  of a 
function 𝑓 at vertex 𝑣𝑖 is given as:

∆𝑓 𝑣𝑖 =
1

2𝐴𝑖
෍

𝑗∈Ω(𝑖)

(cot𝛼𝑖𝑗 + cot𝛽𝑖𝑗)(𝑓𝑗 − 𝑓𝑖)

1. most widely used discretization 

2. (cot𝛼𝑖𝑗 + cot𝛽𝑖𝑗) become negative if 𝛼𝑖𝑗 + 𝛽𝑖𝑗 > 𝜋. 
Violate the property of POSITIVE WEIGHTS.

𝛾𝑗

𝛾𝑘



No free lunch

• Main result Not all meshes admit Laplacians satisfying properties 
(SYMMETRY), (LOCALITY), (LINEAR PRECISION), and (POSITIVE 
WEIGHTS) simultaneously.



Implementation thinking

• How to compute the cotangent formula? 

• One simple idea: for each edge, compute the related cot value.

• Any improvement? More efficient?



Discrete Curvature

• When applied to the coordinate function 𝒙, the Laplace-Beltrami 
operator provides a discrete approximation of the mean curvature 
normal.

∆𝒙 = −2𝐻𝒏

absolute discrete mean curvature at vertex 𝑖:

𝐻𝑖 =
1

2
||∆𝒙||

• A discrete operator for Gaussian curvature:

𝐾𝑖 =
1

𝐴𝑖
2𝜋 − ෍

𝑗∈Ω(𝑖)

𝜃𝑗



Implementation thinking

• How to compute the discrete Gaussian curvature? 

• One simple idea: for each vertex, compute the related angle.

• Any improvement? More efficient?



Second homework

• Color bar
• Map a value to a color

• Visualize:
• mean curvature, 

• absolute mean curvature, 

• and Gaussian curvature.



Mesh Smoothing
Xiao-Ming Fu



Denoising

• Removing the noise (the 
high frequencies) and 
keeping the overall shape 
(the low frequencies)

• Physical scanning process

• Feature VS Noise



Smoothing – From wiki

• In statistics and image processing, to smooth a data set is to 
create an approximating function that attempts to capture 
important patterns in the data, while leaving out noise or 
other fine-scale structures/rapid phenomena. 

• In smoothing, the data points of a signal are modified so 
individual points (presumably because of noise) are reduced, 
and points that are lower than the adjacent points are 
increased leading to a smoother signal. 



Outline

• Filter-based methods

• Optimization-based methods

• Data-driven methods



Outline

• Filter-based methods

• Optimization-based methods

• Data-driven methods



Laplacian smoothing

• Diffusion flow: a mathematically well-understood model for the time-
dependent process of smoothing a given signal 𝑓(𝒙, 𝑡).
• Heat diffusion, Brownian motion

• Diffusion equation: 
𝜕𝑓 𝒙, 𝑡

𝜕𝑡
= 𝜆∆𝑓(𝒙, 𝑡)

1. A second-order linear partial differential equation;

2. Smooth an arbitrary function 𝑓 on a manifold surface by using 
Laplace-Beltrami Operator.

3. Discretize the equation both in space and time.



Spatial discretization

• Sample values at the mesh vertices 𝒇(𝑡) = 𝑓 𝑣1, 𝑡 , … , 𝑓 𝑣𝑛, 𝑡
𝑇

• Discrete Laplace-Beltrami using either the uniform or cotangent 
formula.

• The evolution of the function value of each vertex:
𝜕𝑓 𝑣𝑖 , 𝑡

𝜕𝑡
= 𝜆∆𝑓(𝒙𝑖 , 𝑡)

Matrix form:
𝜕𝒇 𝑡

𝜕𝑡
= 𝜆 ∙ 𝐿𝒇(𝑡)



Temporal discretization

• Uniform sampling: (𝑡, 𝑡 + ℎ, 𝑡 + 2ℎ,… )

• Explicit Euler integration:

𝒇 𝑡 + ℎ = 𝒇 𝑡 + ℎ
𝜕𝒇 𝑡

𝜕𝑡
= 𝒇 𝑡 + ℎ𝜆 ∙ 𝐿𝒇(𝑡)

1. Numerically stability: a sufficiently small time step ℎ.

• Implicit Euler integration:
𝒇 𝑡 + ℎ = 𝒇 𝑡 + ℎ𝜆 ∙ 𝐿𝒇(𝑡 + ℎ)
⟺ 𝑰− ℎ𝜆 ∙ 𝐿 𝒇 𝑡 + ℎ = 𝒇 𝑡



Laplacian smoothing

• Arbitrary function ⟹ vertex positions
• 𝒇 ⟹ 𝒙𝟏, … , 𝒙𝒏

𝑻

• Laplacian smoothing:
𝒙𝑖 ⟵ 𝒙𝑖 + ℎ𝜆 ∙ ∆𝒙𝑖

1. ∆𝒙 = −2𝐻𝒏⟶ vertices move along the normal direction by an 
amount determined by the mean curvature 𝐻.

2. mean curvature flow.





Different Laplace-Beltrami operators

• Cotangent Laplacian.
• the movement in the normal direction is true.

• Uniform Laplacian
• move each vertex to the barycenter of its one-ring neighbors.

• smooths the mesh geometry and a tangential relaxation of the triangulation.

Input Uniform Cotangent



Fairing

• Goal: compute shapes 
that are as smooth as 
possible

• Steady-states of the 
flow:
• 𝐿𝒙 = 0

• 𝐿𝑘𝒙 = 0

• …



Gaussian Image Denoising

• The Gaussian filter for an image pixel 𝐼(𝒑), at coordinate 𝒑 = (𝑥, 𝑦), 
is defined as:

𝐼 𝒑 ⟵
1

𝐾𝒑
෍

𝒒∈Ω(𝒑)

𝑊𝑠 𝒑 − 𝒒 𝐼(𝒒)

1. Ω 𝒑 : neighborhood of 𝒑.

2. 𝑊𝑠: position similarity between 𝒑 and 𝒒, Gaussian function with 
standard deviations 𝜎𝑠

3. 𝐾𝒑 is the normalization term, the summation of weights.



Edge is not preserved!!!



Bilateral Image Denoising

• The bilateral filter for an image pixel 𝐼(𝒑), at coordinate 𝒑 = (𝑥, 𝑦), is 
defined as:

𝐼 𝒑 ⟵
1

𝐾𝒑
෍

𝒒∈Ω(𝒑)

𝑊𝑠 𝒑 − 𝒒 𝑊𝑟 𝐼 𝒑 − 𝐼 𝒒 𝐼(𝒒)

1. Ω 𝒑 : neighborhood of 𝒑.

2. 𝑊𝑠 and 𝑊𝑟: monotonically decreasing weighting functions and often 
be Gaussian functions, with standard deviations 𝜎𝑠 and 𝜎𝑟.

3. 𝑊𝑠: position similarity between 𝒑 and 𝒒.

4. 𝑊𝑟: color similarity between 𝒑 and 𝒒.

5. 𝐾𝒑 is the normalization term, the summation of weights.



Bilateral Image Denoising

• non-linear

• edge-preserving

• noise-reducing smoothing

• Extended to mesh case!!!



Bilateral Mesh Denoising
Paper: Bilateral Mesh Denoising
• Vertex positions cannot simply be 

considered as the signal to be processed.

• Filtering a mesh using local neighborhoods.

• Main idea: local parameter space for every 
vertex using the tangent plane.
• The heights of vertices over the tangent plane 
⟺ gray-level values of an image.

• Update 𝒗:

𝒗𝑛𝑒𝑤 = 𝒗 + 𝑑 ∙ 𝒏

Once 𝒏 is given, we need to compute the 
new 𝑑 to update 𝒗.

𝑑

𝒏

𝒗

𝑡

𝒒𝑖



Pseudo-code

Denoise_Point(Vertex 𝒗, Normal 𝒏)

𝑞𝑖 = Ω(𝒗), 𝑁: number of neighbor vertices, 𝑑sum, 𝐾𝒗 = 0

for 𝑖 ≔ 1 𝑡𝑜 𝑁

𝑡 = 𝒗 − 𝒒𝑖
𝑑 = 𝒏, 𝒗 − 𝒒𝑖
𝑤𝑆 = exp −𝑡2/(2𝜎𝑠)

𝑤𝑟 = exp −𝑑2/(2𝜎𝑟)

𝑑sum += 𝑤𝑆 ∙ 𝑤𝑟 ∙ 𝑑

𝐾𝒗 += 𝑤𝑆 ∙ 𝑤𝑟
end

return 𝒗𝑛𝑒𝑤 = 𝒗 + 𝒏 ∙ 𝑑sum/𝐾𝒗

𝑑

𝒏

𝒗

𝑡

𝒒𝑖



Detail

• Normal:  weighted average of the normals
• 1-ring neighborhood of the vertex.
• k-ring neighborhood for extremely noisy data.
• weight: the area of the triangles.

• Mesh shrinkage: volume preservation technique.
• Scale the updated mesh to preserve the volume.
• How to compute the volume?

• Boundary.

• Parameters: 𝜎𝑠, 𝜎𝑟, number of iterations.





Bilateral Normal Filtering
Paper: Bilateral Normal Filtering for Mesh Denoising

• The normals on facets are well-defined.

• Considers normals as a surface signal defined over the original mesh.

• A novel bilateral normal filter that depends on both spatial distance 
and signal distance.

• Recover vertex positions in global and non-iterative manner.



Bilateral Normal Filtering

𝒏 𝑓𝑖 ⟵
1

𝐾𝒑
෍

𝑓𝑗∈Ω(𝑓𝑖)

𝐴𝑗𝑊𝑠 𝒄𝑖 − 𝒄𝑗 𝑊𝑟 𝒏 𝑓𝑖 − 𝒏 𝑓𝑗 ∙ 𝒏(𝑓𝑗)

1. 𝒏 𝑓𝑖 : the normal of facet 𝑓𝑖.

2. 𝒄𝑖: the center of facet 𝑓𝑖.

3. Ω(𝑓𝑖): the neighbor facets of 𝑓𝑖.

4. 𝑊𝑠 𝒄𝑖 − 𝒄𝑗 : spatial distance.

5. 𝑊𝑟 𝒏 𝑓𝑖 − 𝒏 𝑓𝑗 : normal difference.

6. 𝐴𝑗: the area of facet 𝑓𝑗.



Mesh Denoising

• Given the normal on each facet, determine the vertex positions to 
match the normal as much as possible.

• Local and Iterative Scheme
• update the normal field.

• update the vertex positions.

• Global and Non-Iterative Scheme
• Energy minimization.



Local and Iterative Scheme

• Normal Updating:

• 𝒏𝑖
𝑡+1 ⟵

1

𝐾𝒑
σ𝑓𝑗∈Ω 𝑓𝑖

𝐴𝑗𝑊𝑠𝑊𝑟 ∙ 𝒏𝑗
𝑡

• Normalize the new normal after each 
iteration.

• Multiple iterations: increase the influence 
from a 1-ring neighborhood to a wider 
region, leading to a smoother mesh. 

• Iteration number: user controls.

𝑓𝑗

𝑓𝑖



Local and Iterative Scheme

Vertex Updating:

𝒏𝑓
𝑇 ∙ 𝒙𝑗 − 𝒙𝑖 = 0

𝒏𝑓
𝑇 ∙ 𝒙𝑘 − 𝒙𝑗 = 0

𝒏𝑓
𝑇 ∙ 𝒙𝑖 − 𝒙𝑘 = 0

Energy:

𝐸 =෍

𝑓𝑘

෍

𝑖,𝑗∈𝑓𝑘

𝒏𝑘
𝑇 ∙ 𝒙𝑗 − 𝒙𝑖

2

Linear system.

𝒏𝑓

𝒙𝑖
𝒙𝑗

𝒙𝑘



Local and Iterative Scheme

Each time, fix other vertex, update one vertex 
(Gauss–Seidel iteration). Why???

𝒙𝑖
𝑛𝑒𝑤 = 𝒙𝑖 +

1

𝑁𝑖
෍

𝑓𝑗∈Ω(𝑖)

𝒏𝑗 ∙ 𝒏𝑗
𝑻 ∙ (𝒄𝑗 − 𝒙𝑖)

1. No need to determine a suitable step size.

2. Not computationally expensive. No need to 
solve a linear system.

3. Iteration number: user control.

𝒏𝑓

𝒙𝑖
𝒙𝑗

𝒙𝑘



Global and Non-Iterative Scheme

• Energy minimization:
𝐸 𝑛 = (1 − 𝜆)𝐸𝑠+𝜆𝐸𝑎

𝐸𝑠 =෍

𝑖

𝐴𝑖 𝐿𝒏𝑛𝑒𝑤 𝑖 2
2

𝐸𝑎 =෍

𝑖

𝐴𝑖 𝒏𝑖
𝑛𝑒𝑤 − 𝑛𝑖 2

2

1. 𝐿: Uniform weighting or cotangent weighting.

2. 𝜆: a parameter to balance the 𝐸𝑠 and 𝐸𝑎.





Manifold Harmonics
Paper: Spectral Geometry Processing with Manifold Harmonics

• 1D Fourier Transform:

𝐹 𝜔 = න
−∞

+∞

𝑓 𝑥 𝑒−2𝜋𝑖𝜔𝑥𝑑𝑥

𝑓 𝑥 = න
−∞

+∞

𝐹 𝜔 𝑒2𝜋𝑖𝜔𝑥𝑑𝜔

spatial domain 𝑓(𝑥) ⟺ frequency domain 𝐹(𝜔)



1D Fourier Transform

• An intuitive geometric interpretation of 𝑓(𝑥): 
• an element of a certain vector space

• 𝑓, 𝑔 = ∞−׬
+∞

𝑓(𝑥)𝑔(𝑥)𝑑𝑥

• 𝑔 𝑥 = 𝑒𝜔 𝑥 := 𝑒2𝜋𝑖𝜔𝑥 = cos 2𝜋𝜔𝑥 + 𝑖 ∙ 𝑠𝑖𝑛(2𝜋𝜔𝑥)

• 𝑒𝜔 𝑥 : frequency-related orthogonal basis

• 𝑓 𝑥 = ∞−׬
+∞

𝑓 𝑥 , 𝑒𝜔 𝑥 𝑒𝜔 𝑥 𝑑𝜔

• It describes how much of the basis function 𝑒𝜔 𝑥 is contained in 𝑓 𝑥 .

• Low-pass filter:
• cutting off all frequencies above a user-defined threshold 𝜔𝑚𝑎𝑥

• ሚ𝑓 𝑥 = 𝜔𝑚𝑎𝑥−׬

+𝜔𝑚𝑎𝑥 𝑓 𝑥 , 𝑒𝜔 𝑥 𝑒𝜔 𝑥 𝑑𝜔



Manifold Harmonics

• How to generalize the 1D Fourier Transform to 2-manifold 
surface?

• sine and cosine functions ⟺ eigenfunctions of the Laplace 
operator
• ∆𝑒𝜔 𝑥 = − 2𝜋𝜔 2𝑒𝜔 𝑥

• Definition of eigenfunctions of the Laplace operator:
• ∆𝑒𝑖 = 𝜆𝑖𝑒𝑖, similar to the eigenvector of a matrix

• Choose eigenfunctions of the Laplace-Beltrami operator on 
2-manifold surfaces as generalized basis functions.



Manifold Harmonics

• Discrete Laplace-Beltrami operator: 𝐿
• Symmetry, uniform or cotangent

• Eigenfunctions become the eigenvectors of 𝐿
• an eigenvector can be considered a discrete sampling of a 

continuous eigenfunction on each vertex.

• natural vibrations: eigenvectors of 𝐿

• natural frequencies: eigenvalues of 𝐿

• 𝐿: symmetry and positive semi-definite
• its eigenvectors build an orthogonal basis

• For each vector 𝒇 = 𝑓1, … , 𝑓𝑛
𝑇: 𝒇 = σ𝑖=1

𝑛 𝒇, 𝒆𝑖 𝒆𝑖



Manifold Harmonics

• Low-pass filter:
• 𝒇 = σ𝑖=1

𝑚 𝒇, 𝒆𝑖 𝒆𝑖 where 𝑚 < 𝑛.

• Replace 𝒇 with vertex coordinates.



Other filters



Discussion

• Computationally expensive
• eigenvector and eigenvalue
• Paper: Fast Approximation of Laplace-Beltrami Eigenproblems, SGP 2018

• A very useful representation of triangle mesh:
• 3D printing

• Reduced-Order Shape Optimization Using Offset Surfaces, SIGGRAPH 2015

• Non-Linear Shape Optimization Using Local Subspace Projections, 
SIGGRAPH 2016

• Face modeling
• Use small 𝑚 to represent the basic shape

• Use Laplacian coordinate to represent the details

• …



Outline

• Filter-based methods

• Optimization-based methods

• Data-driven methods



Prior

• The model consists of flat regions.



𝐿0 smoothing
Paper: Mesh denoising via 𝐿0 minimization 

•The method maximizes the flat regions of 
the model and gradually removes noise 
while preserving sharp features.



𝐿0 minimization for images
Paper: Image smoothing via 𝐿0 gradient minimization



𝐿0 minimization for images
Paper: Image smoothing via 𝐿0 gradient minimization

• Energy:

𝑐 − 𝑐⋆ 2 + 𝛻𝑐 0

• 𝑐: a vector of pixel colors

• 𝑐⋆: original image colors

• 𝛻𝑐: a vector of gradients of these colors

• 𝛻𝑐 0: 𝐿0 norm of 𝛻𝑐

Difficult to solve!



Optimization method

• Auxiliary variables 𝛿:
min
𝑐,𝛿

𝑐 − 𝑐⋆ 2 + 𝛽 𝛻𝑐 − 𝛿 2 + 𝜆 𝛿 0

• Alternating optimization:

• 1. Fix 𝑐, solve 𝛿 – subproblem:
min
𝛿

𝛽 𝛻𝑐 − 𝛿 2 + 𝜆 𝛿 0

• 2. Fix 𝛿, solve 𝑐 – subproblem:
min
𝑐,𝛿

𝑐 − 𝑐⋆ 2 + 𝛽 𝛻𝑐 − 𝛿 2 Quadratic

Analytic solution



𝛿 – subproblem

𝛿𝑖 = ቊ
0, if 𝛽 𝛻𝑐𝑖

2 ≤ 𝜆
𝛻𝑐𝑖 , otherwise

1. If 𝛽 𝛻𝑐𝑖
2 ≤ 𝜆, non-zero 𝛿𝑖 yields:

𝛽 𝛻𝑐𝑖 − 𝛿𝑖
2 + 𝜆 𝛿𝑖 0 = 𝛽 𝛻𝑐𝑖 − 𝛿𝑖

2 + 𝜆 ≥ 𝜆 ≥ 𝛽 𝛻𝑐𝑖
2

When 𝛿𝑖 = 0, 𝛽 𝛻𝑐𝑖 − 𝛿𝑖
2 + 𝜆 𝛿𝑖 0 = 𝛽 𝛻𝑐𝑖

2.

Thus,  the  minimum is achieved when 𝛿𝑖 = 0.

2. If 𝛽 𝛻𝑐𝑖
2 > 𝜆, 

When 𝛿𝑖 = 0, 𝛽 𝛻𝑐𝑖 − 𝛿𝑖
2 + 𝜆 𝛿𝑖 0 = 𝛽 𝛻𝑐𝑖

2 > 𝜆.

When 𝛿𝑖 ≠ 0, the minimum is achieved when 𝛿𝑖 = 𝛻𝑐𝑖 and is 𝜆.





Mesh denoising

•𝑐 → points 𝑝 of input triangle mesh

•𝛻𝑐 → discrete differential operator?

• It is the key.



𝛻𝑐

•Requirements:
• 𝛻𝑐 = 0 when the surface is flat
• It is irrespective of the rotation or translation of the 

surface. 

•Cot Laplacian operator.



1. Fail to reproduce
sharp feature

2. Shrink the surface



Differential Edge Operator

• 𝑝𝑗 − 𝑝𝑗+1
⊥
= 𝑝𝑗+1 − 𝑝0 cot 𝜃0,𝑗,𝑗+1 + 𝑝𝑗 − 𝑝0 cot 𝜃𝑗,𝑗+1,0

• Vertex-based cot Laplacian operator: σ𝑗∈Ω(𝑝0)
𝑝𝑗 − 𝑝𝑗+1

⊥



Differential Edge Operator
• Simialr to vertex version:

𝐷 𝑒 = ෍

𝑗∈Ω(𝑒)

𝑝𝑗 − 𝑝𝑗+1
⊥



Differential Edge Operator

• 𝐷 𝑒 =

−cot 𝜃2,3,1 − cot 𝜃1,3,4
cot 𝜃2,3,1 + cot 𝜃3,1,2
−cot 𝜃3,1,2 − cot 𝜃4,1,3
cot 𝜃1,3,4 + cot 𝜃4,1,3

𝑇
𝑝1
𝑝2
𝑝3
𝑝4

• 𝐷 𝑒 = 2 sin(
𝛾

2
) |𝑝3 − 𝑝1|



The issue stems from 
degenerate triangles 
where the cot weights 
approach infinity as an
angle approaches zero. 



Area-based edge operator

• LINEAR PRECISION:

• 0 = σ𝑗∈Ω(𝑖)𝜔𝑖𝑗(𝑝𝑖 − 𝑝𝑗)=σ 𝑘∈Ω(𝑖)∪𝑖𝜔𝑖,𝑗
′ 𝑝𝑘

• At the same time: 0 = σ 𝑘∈Ω(𝑖)∪𝑖𝜔𝑖,𝑗
′

• Similarly: when 𝑝𝑗 are planar:

0=෍

𝑗

𝜔𝑗 𝑝𝑗 , 0=෍

𝑗

𝜔𝑗

𝜔1 = −Δ2,3,4, 𝜔2 = Δ1,3,4,

𝜔3 = −Δ1,2,4, 𝜔4 = Δ1,2,3



Area-based edge operator

• It is not scale-independent. 

• Scaled by Δ1,3,4 + Δ1,2,3

• How to compute Δ2,3,4 and Δ1,2,4?
• an isometric unfolding of the surface around the 

shared edge







𝐿0 smoothing
Paper: Mesh denoising via 𝐿0 minimization 

• Paper: 
http://faculty.cs.tamu.edu/schaefer/research/L0Smoothing.pdf

• Slides: 
http://faculty.cs.tamu.edu/schaefer/research/slides/L0Smoothing.pdf

• Blog: http://www.cnblogs.com/shushen/p/5113484.html

http://faculty.cs.tamu.edu/schaefer/research/L0Smoothing.pdf
http://faculty.cs.tamu.edu/schaefer/research/slides/L0Smoothing.pdf


Total Variation-based method
Paper: Variational Mesh Denoising using Total Variation and Piecewise 
Constant Function Space

• Replace the vertex positions with the normals.
• Facet normal filtering

• Total Variation

• Vertex updating
• Iterative updating

• How to remove the noise and preserve the sharp feature?
• Sharp feature is sparse.

• Normal difference on edge is sparse.

𝒏1

𝒏2
𝑒



Total Variation

min𝐸𝑇𝑉 + 𝛼𝐸𝑎
𝐸𝑇𝑉 =෍

𝑒

𝜔𝑒 ∙ 𝑙𝑒 𝛻𝒏𝑒 2
2

𝐸𝑎 =෍

𝑓

𝒏𝑓 − 𝒏𝑓
𝑖𝑛

2

2

1. 𝛻𝒏𝒆 = 𝒏1 − 𝒏2

2. 𝜔𝑒 = exp − 𝒏1
𝑖𝑛 − 𝒏2

𝑖𝑛
2

4 𝒏1

𝒏2
𝑒



Outline

• Filter-based methods

• Optimization-based methods

• Data-driven methods



Mesh Denoising via Cascaded Normal Regression

A highly nonlinear function



Overview

• Goal: learn the relationship between noisy geometry and the ground-
truth geometry

𝑛𝑓 = ℱ(Ω𝑓)

Ω𝑓: local noisy region



Cascaded Regression

• The output from the current regression function serves as the input 
of the next regression function.

• Each regression function: a neural network with a single hidden layer



Offline training stage

• A training pair: (𝑆𝑖 , ത𝑛𝑖)

𝑆𝑖: filtered facet normal descriptor (FND) of 𝑖𝑡ℎ facet 

ത𝑛𝑖: ground-truth facet normal

• Goal: learn the function:
ℱ: 𝑆𝑖 → ത𝑛𝑖 , ∀𝑖



Runtime denoising stage

• Extract FND for each facet

• Apply ℱ to obtain new normal for each facet

• Recover vertices with known normal



Bilateral Normal Filtering

𝒏𝑖
𝑘+1 ⟵

1

𝐾𝒑
෍

𝑓𝑗

𝐴𝑗𝑊𝑠 𝒄𝑖 − 𝒄𝑗 𝑊𝑟 𝒏𝑖
𝑘 − 𝒏𝑗

𝑘 ∙ 𝒏𝑗
𝑘

Parameters: 𝜎𝑠, 𝜎𝑟, iteration number 𝐾

• Bilateral filtered facet normal descriptor (B-FND)
𝑆𝑖
≔ ቀ𝒏𝑖

1 𝜎𝑠1, 𝜎𝑟1 , … , 𝒏𝑖
1 𝜎𝑠𝐿 , 𝜎𝑟𝐿 , 𝒏𝑖

2 𝜎𝑠1, 𝜎𝑟1 , … , 𝒏𝑖
2 𝜎𝑠𝐿 , 𝜎𝑟𝐿 , … ,



Guided bilateral filter (Joint bilateral filter)

𝒏𝑖
𝑘+1 ⟵

1

𝐾𝒑
෍

𝑓𝑗

𝐴𝑗𝑊𝑠 𝒄𝑖 − 𝒄𝑗 𝑊𝑟 𝑔(𝒏𝑖
𝑘) − 𝑔(𝒏𝑗

𝑘) ∙ 𝒏𝑗
𝑘

In this paper, 𝑔 𝒏𝑖
𝑘 =

1

𝐾𝒑
σ𝑓𝑗

𝐴𝑗𝑊𝑠 𝒄𝑖 − 𝒄𝑗 ∙ 𝒏𝑗
𝑘

• Guided filtered facet normal descriptor (G-FND)
𝑆𝑖
𝑔

≔ ቀ𝒏𝑔,𝑖
1 𝜎𝑠1, 𝜎𝑟1 , … , 𝒏𝒈,𝑖

1 𝜎𝑠𝐿 , 𝜎𝑟𝐿 ,

Gaussian normal filter 



Training data

• A dataset: 𝐷 = 𝑆𝑖 , ത𝑛𝑖 𝑖=1
𝑁

• First Partition the training data into 𝐾𝑐 clusters via a k-means 
algorithm

• For each cluster 𝐷𝑙: 85% the training set 𝐷𝑙1, 15% validation set 𝐷𝑙2



Cluster-based regression

• Cost function:

𝐸 ≔ ෍

𝑖∈𝐷𝑙1

Λ Φ𝑙 𝑆𝑖 − ത𝑛𝑖
2
+ 𝜆𝐸𝑟𝑒𝑔

𝐸𝑟𝑒𝑔: commonly used L2 regularization term  of unknown parameters

Φ𝑙: regression function as a single-hidden layer feed forward network  
𝑁𝑟 hidden nodes 

Φ𝑙 𝑆 = ෍

𝑘=1

𝑁𝑟

exp − 𝑊𝑙,𝑘
𝑇 ҧ𝑆 − 𝑏𝑙,𝑘

2
𝒂𝑙,𝑘

ҧ𝑆: feature standardization version of 𝑆

𝑊𝑙,𝑘
𝑇 ∈ 𝑅3𝐿𝐾, 𝑏𝑙,𝑘 ∈ 𝑅, 𝒂𝑙,𝑘 ∈ 𝑅

3



Regression function

ℱ 𝑆 ≔ Φ𝑙(𝑆), if 𝑆 − 𝑐𝑙 ≤ 𝑆 − 𝑐𝑘 , ∀𝑘.
𝑐𝑙: cluster center of 𝐷𝑙.



Cascaded scheme

• G-FND in the first regression function



Choice of hyperparameters

• 𝜎𝑠: { ҧ𝑙𝑒 , 2 ҧ𝑙𝑒}, ҧ𝑙𝑒 is the average edge length.

• 𝜎𝑟: {0.1,0.2,0.35,0.5,∞}

•𝐾 = 1

• 3 cascaded regressions are enough to generate good 
results.

•𝐾𝑐 = 4 after testing.

•𝑁𝑟 = 20 after testing. 





Mesh Parameterizations

Xiao-Ming Fu



Outline

• Definition

• Tutte’s barycentric mapping

• Least squares conformal maps(LSCM, ASAP)

• Angle-Based Flattening (ABF)
• ABF++, LABF

• As-rigid-as-possible (ARAP)
• Simplex Assembly



Outline

• Definition
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Definition

• A function that puts 
input surface in one-to-
one correspondence 
with a 2D domain.

• Parameterization of a 
Triangulated Surface
• all (𝑢𝑖 , 𝑣𝑖) coordinates 

associated with each 
vertex 𝒗𝑖 = 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖

𝑇 3D 2D



Goal

• Map attributes
• Color

• Normal

• ……



Constraints
• Bijective

• The image of the surface in parameter space does not self-intersect.

• The intersection of any two triangles in parameter space is either a 
common edge, a common vertex, or empty.



Constraints
• Inversion-free

• The orientation of each triangle is positive.



Constraints

• Locally injective
• The orientation of each triangle is positive → det 𝐽 > 0.

• For boundary vertex, the mapping is locally bijective →
𝜃 𝒗 < 2𝜋.

𝜃 𝒗 < 2𝜋
𝜃 𝒗 > 2𝜋

𝒗



Constraints

• Low distortion
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Barycentric Mapping, Tutte’s embedding

• One of the most widely used methods.

Given a triangulated surface homeomorphic to a disk, if the
(𝑢, 𝑣) coordinates at the boundary vertices lie on a convex polygon in 
order, and if the coordinates of the internal vertices are a convex 
combination of their neighbors, then the (𝑢, 𝑣) coordinates form a 
valid parameterization (without self-intersections, bijective).



Barycentric Mapping

• Homeomorphic to a disk.

• A convex polygon
• circle, square,……

• A convex combination
• 𝜔𝑖𝑗 > 0

• Uniform Laplacian, mean value 
coordinate

• Solver: linear equation.



Mean value coordinates

• Our aim is to study sets of weights 
𝜆1, … , 𝜆𝑘 ≥ 0 such that

෍

𝑖=1

𝑘

𝜆𝑖𝑣𝑖 = 𝑣0

෍

𝑖=1

𝑘

𝜆𝑖 = 1

𝑣𝑖 is on 2D.

𝑣0

𝑣3

𝑣2

𝑣1

𝑣4

𝑣5

𝑣6
𝛼1

𝛽1
𝛾1

𝛽2

𝛾2

𝛼2



Proposition

• The weights

𝜆𝑖 =
𝜔𝑖

σ𝑖=1
𝑘 𝜔𝑖

,

𝜔𝑖 =
tan

𝛼𝑖−1
2

+ tan
𝛼𝑖
2

𝑣𝑖 − 𝑣0
are the valid weights.

Proof: substitution. ???

Come from the mean value theorem for 
harmonic functions. ???

𝑣0

𝑣3

𝑣2

𝑣1

𝑣4

𝑣5

𝑣6
𝛼1

𝛽1
𝛾1

𝛽2

𝛾2

𝛼2



Mean value coordinates

• The input mesh is a spatial one.
• 𝑣𝑖 ∈ 𝑅3

• the mean value coordinates can be applied directly.

• compute the coordinates directly form the spatial angle.
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Conformal mapping

• Conformal mappings locally correspond to similarities



Mapping

• Build a local coordinate 
system on input triangle 𝑡.

• The mapping is piecewise 
linear.

• 𝐽𝑡 is 2 × 2.

𝑓𝑡(𝒙) = 𝐽𝑡𝒙 + 𝒃𝑡

𝑡 𝑇

(𝑥𝑖 , 𝑦𝑖)

(𝑥𝑗 , 𝑦𝑗) (𝑥𝑘 , 𝑦𝑘)

(𝑢𝑖 , 𝑣𝑖)

(𝑢𝑗 , 𝑣𝑗)

(𝑢𝑘, 𝑣𝑘)

𝑢𝑗 − 𝑢𝑖 𝑢𝑘 − 𝑢𝑖
𝑣𝑗 − 𝑣𝑖 𝑣𝑘 − 𝑣𝑖

𝑥𝑗 − 𝑥𝑖 𝑥𝑘 − 𝑥𝑖
𝑦𝑗 − 𝑦𝑖 𝑦𝑘 − 𝑦𝑖

−1



Mapping

• 𝐽𝑡 is the Jacobian of 𝑓𝑡(𝒙).

𝐽𝑡 =

𝜕𝑢

𝜕𝑥

𝜕𝑢

𝜕𝑦
𝜕𝑣

𝜕𝑥

𝜕𝑣

𝜕𝑦
𝜕𝑢

𝜕𝑥
𝜕𝑢

𝜕𝑦

= 𝛻𝑢

=
1

2𝐴𝑡

𝑦𝑗 − 𝑦𝑘 𝑦𝑘 − 𝑦𝑖 𝑦𝑖 − 𝑦𝑗
𝑥𝑘 − 𝑥𝑗 𝑥𝑖 − 𝑥𝑘 𝑥𝑗 − 𝑥𝑖

𝑢𝑖
𝑢𝑗
𝑢𝑘

𝑓𝑡(𝒙) = 𝐽𝑡𝒙 + 𝒃𝑡

𝑡 𝑇

(𝑥𝑖 , 𝑦𝑖)

(𝑥𝑗 , 𝑦𝑗) (𝑥𝑘 , 𝑦𝑘)

(𝑢𝑖 , 𝑣𝑖)

(𝑢𝑗 , 𝑣𝑗)

(𝑢𝑘, 𝑣𝑘)



Similar transform

•2D case: for one triangle 𝑡

• 𝐽𝑡 =
𝑎 −𝑏
𝑏 𝑎

= s
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

•⟹ ൞

𝜕𝑢

𝜕𝑥
=

𝜕𝑣

𝜕𝑦

𝜕𝑢

𝜕𝑦
= −

𝜕𝑣

𝜕𝑥

• Cauchy-Riemann Equations.

𝐽𝑡 =

𝜕𝑢

𝜕𝑥

𝜕𝑢

𝜕𝑦
𝜕𝑣

𝜕𝑥

𝜕𝑣

𝜕𝑦



Least squares conformal maps(LSCM, ASAP)

• Energy

• 𝐸𝐿𝑆𝐶𝑀 = σ𝑡𝐴𝑡
𝜕𝑢

𝜕𝑥
−

𝜕𝑣

𝜕𝑦

2
+

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥

2

• measure non-conformality
• It is invariant with respect to arbitrary translations and 

rotations.
• 𝐸𝐿𝑆𝐶𝑀 does not have a unique minimizer.
• Fixing at least two vertices. Significantly affect the results.
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Angle-Based Flattening (ABF)

• Key observation:  the parameter space is a 2D 
triangulation, uniquely defined by all the angles 
at the corners of the triangles.
• Find angles instead of (𝑢𝑖 , 𝑣𝑖) coordinates.
• Use angles to reconstruct the resulting 

parameterization.

• Optimization goal:

𝐸𝐴𝐵𝐹 =෍

𝑡

෍

𝑖=1

3

𝜔𝑖
𝑡 𝛼𝑖

𝑡 − 𝛽𝑖
𝑡 2

𝛽𝑖
𝑡: Optimal angles for 𝛼𝑖

𝑡.

𝜔𝑖
𝑡 = 𝛽𝑖

𝑡 −2
.

𝛼2

𝛼1

𝛼3𝑡

𝛽𝑖
𝑡 =

෨𝛽𝑖
𝑡 ∙ 2𝜋

σ𝑖
෨𝛽𝑖
𝑡
, 𝐼𝑛𝑡𝑒𝑟𝑖𝑜𝑟 𝑣𝑒𝑟𝑡𝑒𝑥

෨𝛽𝑖
𝑡 , 𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑣𝑒𝑟𝑡𝑒𝑟𝑥



Constraints 

• Positive resulting angles:
𝛼𝑖
𝑡 > 0

• The three triangle angles have to sum to 𝜋:
𝛼𝑖
𝑡 + 𝛼2

𝑡 + 𝛼3
𝑡 = 𝜋

• For each internal vertex the incident angles 
have to sum to 2𝜋:

෍

𝑡∈Ω(𝑣)

𝛼𝑘
𝑡 = 2𝜋

• Reconstruction constraints:

ෑ

𝑡∈Ω(𝑣)

sin 𝛼𝑘⊕1
𝑡 = ෑ

𝑡∈Ω(𝑣)

sin 𝛼𝑘⊖1
𝑡 ? ? ?

𝑣
𝑣𝑘



Linear ABF

• Reconstruction constraints are nonlinear and hard to solve.

• Initial estimation + estimation error
• 𝛼𝑖

𝑡 = 𝛾𝑖
𝑡 + 𝑒𝑖

𝑡

log ෑ

𝑡∈Ω 𝑣

sin 𝛼𝑘⊕1
𝑡 = log ෑ

𝑡∈Ω(𝑣)

sin 𝛼𝑘⊖1
𝑡

෍

𝑡∈Ω 𝑣

log sin 𝛼𝑘⊕1
𝑡 = ෍

𝑡∈Ω 𝑣

log sin 𝛼𝑘⊖1
𝑡

• Taylor expansion:
log sin 𝛼𝑘⊕1

𝑡 = log sin 𝛾𝑘⊕1
𝑡 + 𝑒𝑘⊕1

𝑡

= log sin 𝛾𝑘⊕1
𝑡 + 𝑒𝑘⊕1

𝑡 cot 𝛾𝑘⊕1
𝑡 +⋯

It is linear with estimation error.



Solver

• Set 𝛾𝑖
𝑡 = 𝛽𝑖

𝑡

• Problem:

min
𝑒

𝐸𝐴𝐵𝐹 =෍

𝑡

෍

𝑖=1

3

𝜔𝑖
𝑡 𝑒𝑖

𝑡 2

subject to 𝐴𝑒 = 𝑏

⟹
𝐷 𝐴𝑇

𝐴 0

𝑒
𝜆

=
0
𝑏

⟹
𝑒 = 𝐷−1𝐴𝑇 𝐴𝐷−1𝐴𝑇 −1𝑏 ? ? ?



Reconstruct parameterization

• Greed method.
• constructs the triangles one by one using a depth-first traversal.

• Least squares method.
• an angle based least squares formulation which solves a set of linear 

equations relating angles to coordinates.



Greed method

• Choose a mesh edge 𝑒1 = (𝑣𝑎
1, 𝑣𝑏

1).

• Project 𝑣𝑎
1 to 0,0,0 and 𝑣𝑏

1 to ( 𝑒1 , 0,0).

• Push 𝑒1 on the stack 𝑆.

• While 𝑆 not empty, pop an edge 𝑒 = 𝑣𝑎, 𝑣𝑏 . For each face 
𝑓𝑖 = (𝑣𝑎, 𝑣𝑏, 𝑣𝑐) containing 𝑒:
• If 𝑓𝑖 is marked as set, continue.

• If 𝑣𝑐 is not projected, compute its position based on 𝑣𝑎 , 𝑣𝑏 and the 
face angles of 𝑓𝑖.

• Mark 𝑓𝑖 as set, push edge (𝑣𝑏 , 𝑣𝑐) and (𝑣𝑎, 𝑣𝑐) on the stack.

• Accumulate numerical error.



Least squares method
• The ratio of triangle edge lengths 𝑃1𝑃3 and 
𝑃1𝑃2 is

𝑃1𝑃3

𝑃1𝑃2
=
sin 𝛼2
sin 𝛼3

⟹

𝑃1𝑃3 =
sin𝛼2
sin 𝛼3

cos 𝛼1 −sin 𝛼1
sin 𝛼1 cos 𝛼1

𝑃1𝑃2

• Thus for each triangle, given the position of 
two vertices and the angles, the position of the 
third vertex can be uniquely derived. 
• greedy method.

𝛼2

𝛼1

𝛼3𝑡

𝑃1

𝑃2

𝑃3



Least squares method

∀𝑡 = 𝑗, 𝑘, 𝑗 , 𝑀𝑡 𝑃𝑘 − 𝑃𝑗 + 𝑃𝑗 − 𝑃𝑙 = 0

𝑀𝑡 =
sin 𝛼𝑘
sin 𝛼𝑙

cos 𝛼𝑗 −sin 𝛼𝑗
sin 𝛼𝑗 cos 𝛼𝑗

1. Two equations per triangle for the 𝑥 and 𝑦
coordinates of the vertices.

2. The angles of a planar triangulation define it 
uniquely up to rigid transformation and 
global scaling.
• Introduce four constraints which eliminate these 

degrees of freedom. 

• Fix two vertices sharing a common edge.

𝛼𝑘

𝛼𝑗

𝛼𝑙𝑡

𝑃𝑗

𝑃𝑘

𝑃𝑙



Least squares method

• Choose one edge 𝑒1 = (𝑣𝑎
1, 𝑣𝑏

1).

• Project 𝑣𝑎
1 to 0,0,0 and 𝑣𝑏

1 to ( 𝑒1 , 0,0).

• Solve following energy to compute positions of 
other vertices:

𝐸 =෍

𝑡

𝑀𝑡 𝑃𝑘 − 𝑃𝑗 + 𝑃𝑗 − 𝑃𝑙
2

𝛼𝑘

𝛼𝑗

𝛼𝑙𝑡

𝑃𝑗

𝑃𝑘

𝑃𝑙
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As-rigid-as-possible method
Paper: A Local/Global Approach to Mesh Parameterization



Distortion type

• Three common distortion types:
• Isometric mapping: rotation + translation

• Conformal mapping: similarity + translation

• Area-preserving mapping: area-preserving + translation

• Conformal + Area-preserving ⟺ Isometric

source Isometric Conformal Area-preserving



Singular values 

• Isometric mapping
• 𝐽𝑡 ⟹ rotation matrix

• 𝜎1 = 𝜎2 = 1

• Conformal mapping
• 𝐽𝑡 ⟹ similar matrix

• 𝜎1 = 𝜎2

• Area-preserving mapping
• det 𝐽𝑡 = 1

• 𝜎1𝜎2 = 1
𝐽𝑡 =

𝜕𝑢

𝜕𝑥

𝜕𝑢

𝜕𝑦
𝜕𝑣

𝜕𝑥

𝜕𝑣

𝜕𝑦

𝑓𝑡(𝒙) = 𝐽𝑡𝒙 + 𝒃𝑡

𝑡 𝑇

(𝑥𝑖 , 𝑦𝑖)

(𝑥𝑗 , 𝑦𝑗) (𝑥𝑘 , 𝑦𝑘)

(𝑢𝑖 , 𝑣𝑖)

(𝑢𝑗 , 𝑣𝑗)

(𝑢𝑘 , 𝑣𝑘)

𝜎1, 𝜎2 are the two
singular values of 𝐽𝑡.



Goal

𝐸 𝑢, 𝐿 =෍

𝑡

𝐴𝑡 𝐽𝑡 − 𝐿𝑡 𝐹
2

𝐿𝑡: target transformation
• Isometric mapping: rotation matrix

• Conformal mapping: similar matrix

• Variables: 
• 2D parameterization coordinate

• Target transformation

• How to optimize? 𝐽𝑡 =

𝜕𝑢

𝜕𝑥

𝜕𝑢

𝜕𝑦
𝜕𝑣

𝜕𝑥

𝜕𝑣

𝜕𝑦

𝑓𝑡(𝒙) = 𝐽𝑡𝒙 + 𝒃𝑡

𝑡 𝑇

(𝑥𝑖 , 𝑦𝑖)

(𝑥𝑗 , 𝑦𝑗) (𝑥𝑘 , 𝑦𝑘)

(𝑢𝑖 , 𝑣𝑖)

(𝑢𝑗 , 𝑣𝑗)

(𝑢𝑘 , 𝑣𝑘)

𝜎1, 𝜎2 are the two
singular values of 𝐽𝑡.



General Local/Global Approach

• Alternatively optimization
• Local step:

• Fix 2D parameterization coordinates, optimize target transformations.

• Global step:
• Fix target transformations, optimize 2D parameterization coordinates.

• Global step:
• Quadratic energy

• Linear system

• Eigen
𝐸 𝑢, 𝐿 =෍

𝑡

𝐴𝑡 𝐽𝑡 − 𝐿𝑡 𝐹
2



Local step: Procrustes analysis

• Approximate one 2 × 2 matrix 𝐽𝑡 as best we can by another 
2 × 2 matrix 𝐿𝑡.

• 𝑑 𝐽𝑡, 𝐿𝑡 = 𝐽𝑡 − 𝐿𝑡 𝐹
2 = 𝑡𝑟𝑎𝑐𝑒 𝐽𝑡 − 𝐿𝑡

𝑇 𝐽𝑡 − 𝐿𝑡
• Minimize 𝑑 𝐽𝑡, 𝐿𝑡 through Singular Value Decomposition (SVD)

• 𝐽𝑡 = 𝑈Σ𝑉𝑇 , Σ =
𝜎1 0
0 𝜎2

• Signed SVD: 𝑈 and 𝑉 are rotation matrix, 𝜎2 maybe negative

• Best rotation: 𝑈𝑉𝑇

• Best similar matrix: 𝑈
𝑠 0
0 𝑠

𝑉𝑇, s =
𝜎1+𝜎2

2



Local/Global Approach summary



Connection to singular values

• Conformal

𝐸 𝑢 =෍

𝑡

𝐴𝑡 𝜎𝑡
1 − 𝜎𝑡

2 2

• Isometric
𝐸 𝑢

=෍

𝑡

𝐴𝑡 𝜎𝑡
1 − 1 2 + 𝜎𝑡

2 − 1 2

???????

𝑓𝑡(𝒙) = 𝐽𝑡𝒙 + 𝒃𝑡

𝑡 𝑇

(𝑥𝑖 , 𝑦𝑖)

(𝑥𝑗 , 𝑦𝑗) (𝑥𝑘 , 𝑦𝑘)

(𝑢𝑖 , 𝑣𝑖)

(𝑢𝑗 , 𝑣𝑗)

(𝑢𝑘 , 𝑣𝑘)

𝐸 𝑢, 𝐿 =෍

𝑡

𝐴𝑡 𝐽𝑡 − 𝐿𝑡 𝐹
2

𝜎𝑡
1, 𝜎𝑡

2 are the two
singular values of 𝐽𝑡.
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Information

• Computing Inversion-Free Mappings by Simplex Assembly

• ACM Transactions on Graphics(SIGGRAPH Asia) 35(6), 2016.

• http://staff.ustc.edu.cn/~fuxm/projects/SimplexAssembly/index.html



Affine transformation

Edge assembly constraints:
𝐴𝑖(𝑣𝑎 − 𝑣𝑏) = 𝐴𝑗(𝑣𝑎 − 𝑣𝑏)

𝑡𝑖

𝑡𝑗

𝑣𝑎 𝑣𝑏

Key observation:  the parameter space 
is a 2D triangulation, uniquely defined 
by all the AFFINE TRANSFORAMTIONS 
on the triangles.



Key idea

• disassembly + assembly
• Treat affine transformation as 

variables

• Unconstrained optimization

(a) (b)

(c) (d)



Distortion control

Conformal: 𝑑𝑖
𝑐 = ൞

1

2
𝐴𝑖 𝐹 𝐴𝑖

−1
𝐹

, 𝑑 = 2

1

8
𝐴𝑖 𝐹

2 𝐴𝑖
−1

𝐹

2
− 1 , 𝑑 = 3

Volumetric: 𝑑𝑖
𝑣𝑜𝑙 =

1

2
det 𝐴𝑖 +

1

det(𝐴𝑖)

Isometric: 𝑑𝑖
𝑖𝑠𝑜 = 0.5 ∙ 𝑑𝑖

𝑐 + 𝑑𝑖
𝑣𝑜𝑙

Barrier function on distortion:
1. The type of distortion and distortion 
bound K are given:

𝐸𝐶
∗ =෍

𝑖=1

𝑁
𝑒𝑠∙𝑑𝑖

∗

𝐾 − 𝑑𝑖
∗

2. The type of distortion is not specified 
or distortion bound 𝐾 = ∞:

𝐸𝐶
∗ =෍

𝑖=1

𝑁

𝑒𝑠∙𝑑𝑖
∗



Unconstrained optimization problem

min
𝐴1,…,𝐴𝑁
𝑇1,…,𝑇𝑁

𝜆𝐸𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦 + 𝐸𝐶 + 𝜇𝐸𝑚

𝐸𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦:  summation of squares of edge, 

assembly constraints.

𝐸𝐶: Barrier function on distortion

𝐸𝑚: users’ designed energy

Disassembly: project initial 

𝐴𝑖
0 into feasible space.

𝜆k+1 = min 𝜆min ∙ max
𝐸𝐶,𝑘 + 𝜇𝐸𝑚,𝑘

𝐸𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦,𝑘
, 1 , 𝜆m𝑎𝑥

1. 𝐸𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦 dominates the energy, approach zero;

2. 𝜆m𝑎𝑥: avoid large distortion.

Assembly: unconstrained 
optimization. 





Optimal bound

• Use the current maximal 
distortion as the bound 
for the next round of 
minimization.



Locally injective mapping

• Requirements for locally 
injective mapping on triangle 
mesh:
• 1. inversion-free;

• 2. the sum of triangle angles 
𝜃𝑣 around boundary vertex 𝑣
is less than 2𝜋.

• A barrier term: 

𝐸𝜃 = ෍

𝑣∈𝜕𝑀

1

2𝜋 − 𝜃𝑣

[Schuller et al. 2013]

Ours without 𝐸𝜃 Ours with 𝐸𝜃

[Lipman 2012] [Fu et al. 2012]

[Kovalsky et al. 2012]



Barycentric Coordinates

Xiao-Ming Fu
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Barycentric coordinates on triangles

𝑥 = 𝜙1𝑣1 + 𝜙2𝑣2 + 𝜙3𝑣3, 

where 𝜙𝑖 =
𝐴𝑖

𝐴
.

• Tetrahedron with four sub-
tetrahedral.

•Any simplex.



Applications

• Function interpolation

• Function composite

• Defining Bernstein-Bézier polynomials over simplices

• ...
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Generalized barycentric coordinates

• Let 𝑃 ⊂ 𝑅2 be a convex polygon, viewed as 
an open set, with vertices 𝑣1, 𝑣2, . . . , 𝑣𝑛, 𝑛 ≥
3, in some anticlockwise ordering. 

• Any functions 𝜙𝑖: 𝑃 → 𝑅, 𝑖 = 1,… , 𝑛, will be 
called generalized barycentric coordinates if 
∀𝑥 ∈ 𝑃, 𝜙𝑖 𝑥 ≥ 0, 𝑖 = 1,… , 𝑛, and 

෍

𝑖=1

𝑛

𝜙𝑖 𝑥 = 1 ,෍

𝑖=1

𝑛

𝜙𝑖 𝑥 𝑣𝑖 = 𝑥

• 𝜙𝑖: from any point in polygon 𝑃 to 𝑅



Triangular barycentric coordinates

𝜙𝑖 𝑥 =
𝐴(𝑥, 𝑣𝑖+1, 𝑣𝑖+2)

𝐴(𝑣1, 𝑣2, 𝑣3)

Note: 𝐴(𝑝1, 𝑝2, 𝑝3) is the signed area of 
the triangle with vertices 𝑝𝑘 =
(𝑥𝑘 , 𝑦𝑘), 𝑘 = 1, 2, 3,

𝐴 𝑥1, 𝑥2, 𝑥3 ≔
1

2

1 1 1
𝑥1 𝑥2 𝑥3
𝑦1 𝑦2 𝑦3

When 𝑛 ≥ 4, it is not unique.

𝑣𝑛+1 = 𝑣1



Some basic properties/requirements

• The functions 𝜙𝑖 have a unique continuous extension to 𝜕𝑃, 
the boundary of 𝑃.

• Lagrange property: 𝜙𝑖 𝑣𝑗 = 𝛿𝑖𝑗
• Piecewise linearity on 𝜕𝑃

• 𝜙𝑖 1 − 𝜇 𝑣𝑗 + 𝜇𝑣𝑗+1 = 1 − 𝜇 𝜙𝑖 𝑣𝑗 + 𝜇𝜙𝑖 𝑣𝑗+1 , 𝜇 ∈ [0,1].

• Interpolation
• If 𝑔 𝑥 = σ𝑖=1

𝑛 𝜙𝑖 𝑥 𝑓 𝑣𝑖 , 𝑥 ∈ 𝑃, then 𝑔 𝑣𝑖 = 𝑓(𝑣𝑖). We call 𝑔 a 
barycentric interpolant to 𝑓.

• Linear precision: if 𝑓 is linear then 𝑔 = 𝑓.



Some basic properties

• 𝑙𝑖 ≤ 𝜙𝑖 ≤ 𝐿𝑖 where 𝐿𝑖 , 𝑙𝑖: 𝑃 → 𝑅 are the continuous, piecewise linear 
functions over the partitions of 𝑃 satisfying 𝐿𝑖 𝑣𝑗 = 𝑙𝑖 𝑣𝑗 = 𝛿𝑖𝑗. 𝐿𝑖
is the least upper bound on 𝜙𝑖 and 𝑙𝑖 the greatest lower bound.
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Bilinear interpolation
https://en.wikipedia.org/wiki/Bilinear_interpolation

• Suppose that we want to find the value of 
the unknown function 𝑓 at the point (𝑥, 𝑦).

• It is assumed that we know the value 
of 𝑓 at the four points 𝑄11 =
𝑥1, 𝑦1 , 𝑄12 = 𝑥1, 𝑦2 , 𝑄21 = 𝑥2, 𝑦1 ,

𝑄22 = 𝑥2, 𝑦2 .

• Bilinear interpolation: The key idea is to 
perform linear interpolation first in one 
direction, and then again in the other 
direction.



Bilinear interpolation
https://en.wikipedia.org/wiki/Bilinear_interpolation

𝑥-direction

𝑓 𝑥, 𝑦1 ≈
𝑥2 − 𝑥

𝑥2 − 𝑥1
𝑓 𝑄11 +

𝑥 − 𝑥1
𝑥2 − 𝑥1

𝑓(𝑄21)

𝑓 𝑥, 𝑦2 ≈
𝑥2 − 𝑥

𝑥2 − 𝑥1
𝑓 𝑄12 +

𝑥 − 𝑥1
𝑥2 − 𝑥1

𝑓(𝑄22)

𝑦-direction

𝑓 𝑥, 𝑦 =
𝑦2 − 𝑦

𝑦2 − 𝑦1
𝑓 𝑥, 𝑦1 +

𝑦 − 𝑦1
𝑦2 − 𝑦1

𝑓 𝑥, 𝑦2

=
(𝑦2 − 𝑦)(𝑥2 − 𝑥)

(𝑦2 − 𝑦1)(𝑥2 − 𝑥1)
𝑓 𝑄11 +

(𝑦2 − 𝑦)(𝑥 − 𝑥1)

(𝑦2 − 𝑦1)(𝑥2 − 𝑥1)
𝑓 𝑄21

+
(𝑦 − 𝑦1)(𝑥2 − 𝑥)

(𝑦2 − 𝑦1)(𝑥2 − 𝑥1)
𝑓 𝑄12 +

(𝑦 − 𝑦1)(𝑥 − 𝑥1)

(𝑦2 − 𝑦1)(𝑥2 − 𝑥1)
𝑓 𝑄22



Unit square

• Suppose 𝑥1 = 𝑦1 = 0, 𝑥2 = 𝑦2 = 1
𝑓 𝑥, 𝑦
= 1 − 𝑥 1 − 𝑦 ⋅ 𝑓 0,0 + 𝑥 1 − 𝑦 ⋅ 𝑓 1,0
+ 1 − 𝑥 𝑦 ⋅ 𝑓 0,1 + 𝑥𝑦 ⋅ 𝑓(1,1)



Convex quadrilaterals

• View 𝑃 as the image of a bilinear map 
from the unit square 0,1 × 0,1 .

• For each 𝑥 ∈ 𝑃, there exist unique 𝜆, µ ∈
(0, 1) such that 

1 − 𝜆 1 − 𝜇 𝑣1 + 𝜆 1 − 𝜇 𝑣2 + 𝜆𝜇𝑣3 +
(1 − 𝜆)𝜇𝑣4 = 𝑥 and so the four functions

𝜙1 𝑥 = (1 − 𝜆)(1 − 𝜇), 𝜙2 𝑥 =
𝜆(1 − 𝜇), 𝜙3 𝑥 = 𝜆𝜇, 𝜙4 𝑥 = (1 −
𝜆)𝜇 are barycentric coordinates for 𝑥.



Inverse of the bilinear map

• 𝐴𝑖 𝑥 = 𝐴 𝑥, 𝑣𝑖 , 𝑣𝑖+1 , 𝐵𝑖 𝑥 = 𝐴(𝑥, 𝑣𝑖−1, 𝑣𝑖+1)

• Theorem

(𝜇, 1 − 𝜆, 1 − 𝜇, 𝜆) =
2𝐴𝑖
𝐸𝑖 𝑖=1,2,3,4

where 𝐸𝑖 = 2𝐴𝑖 − 𝐵𝑖 − 𝐵𝑖+1 + 𝐷 and 

𝐷 = 𝐵1
2 + 𝐵2

2 + 2𝐴1𝐴3 + 2𝐴2𝐴4.

Therefore 

𝜙𝑖 =
4𝐴𝑖+1𝐴𝑖+2
𝐸𝑖+1𝐸𝑖+2

𝑣𝑖+1



Inverse of the bilinear map

• Proof process, i.e., computational process:

• Known: 1 − 𝜆 1 − 𝜇 𝑣1 + 𝜆 1 − 𝜇 𝑣2 + 𝜆𝜇𝑣3 +
(1 − 𝜆)𝜇𝑣4 = 𝑥 and the convex quad 𝑃

• We want to solve 𝜆, 𝜇.
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Mean value coordinates (MVC)

The weights

𝜙𝑖 =
𝜔𝑖

σ𝑗=1
𝑛 𝜔𝑗

,

𝜔𝑖 =
tan

𝛼𝑖−1
2

+ tan
𝛼𝑖
2

𝑣𝑖 − 𝑣0
are coordinates for 𝑣0 with respect to 
𝑣1, . . . , 𝑣𝑛.



Three requirements

Since 0 < 𝛼𝑖 < 𝜋, 𝜙𝑖 𝑥 ≥ 0

σ𝑖=1
𝑛 𝜙𝑖 𝑥 = 1, by definition

෍

𝑖=1

𝑛

𝜙𝑖 𝑥 𝑣𝑖 = 𝑣0 ⟺෍

𝑖=1

𝑛

𝜙𝑖 𝑥 𝑣𝑖 − 𝑣0 = 0

𝜙𝑖 =
𝜔𝑖

σ𝑗=1
𝑛 𝜔𝑗

,

𝜔𝑖 =
tan

𝛼𝑖−1
2

+ tan
𝛼𝑖
2

𝑣𝑖 − 𝑣0



Three requirements

• Proof.
𝑣𝑖 = 𝑣0 + 𝑟𝑖(cos 𝜃𝑖 , sin 𝜃𝑖)

Then we have 
𝑣𝑖 − 𝑣0
𝑣𝑖 − 𝑣0

= (cos 𝜃𝑖 , sin 𝜃𝑖)

𝛼𝑖 = 𝜃𝑖+1 − 𝜃𝑖
Then,

෍

𝑖=1

𝑛

𝜙𝑖 𝑥 𝑣𝑖 − 𝑣0

=෍

𝑖=1

𝑛

tan
𝛼𝑖−1
2

+ tan
𝛼𝑖
2

(cos 𝜃𝑖 , sin 𝜃𝑖)

𝜙𝑖 =
𝜔𝑖

σ𝑗=1
𝑛 𝜔𝑗

,

𝜔𝑖 =
tan

𝛼𝑖−1
2

+ tan
𝛼𝑖
2

𝑣𝑖 − 𝑣0



Proof

෍

𝑖=1

𝑛

tan
𝛼𝑖−1
2

+ tan
𝛼𝑖
2

cos 𝜃𝑖 , sin 𝜃𝑖

=෍

𝑖=1

𝑛

tan
𝛼𝑖
2

൫ cos 𝜃𝑖 , sin 𝜃𝑖

𝜙𝑖 =
𝜔𝑖

σ𝑗=1
𝑛 𝜔𝑗

,

𝜔𝑖 =
tan

𝛼𝑖−1
2

+ tan
𝛼𝑖
2

𝑣𝑖 − 𝑣0



Since

cos 𝜃 =
cos 𝜃 sin(𝜃𝑖+1 − 𝜃𝑖)

sin(𝜃𝑖+1 − 𝜃𝑖)

=
cos 𝜃 sin 𝜃𝑖+1 cos 𝜃𝑖 − cos 𝜃 sin 𝜃𝑖 cos 𝜃𝑖+1

sin(𝛼𝑖)

=
cos 𝜃 sin 𝜃𝑖+1 cos 𝜃𝑖 − sin 𝜃 cos 𝜃𝑖 cos 𝜃𝑖+1

sin(𝛼𝑖)

+
sin 𝜃 cos 𝜃𝑖 cos 𝜃𝑖+1 − cos 𝜃 sin 𝜃𝑖 cos 𝜃𝑖+1

sin(𝛼𝑖)

=
sin 𝜃𝑖+1 − 𝜃 cos 𝜃𝑖

sin(𝛼𝑖)
+
sin(𝜃 − 𝜃𝑖) cos 𝜃𝑖+1

sin(𝛼𝑖)

Proof
𝜙𝑖 =

𝜔𝑖

σ𝑗=1
𝑛 𝜔𝑗

,

𝜔𝑖 =
tan

𝛼𝑖−1
2

+ tan
𝛼𝑖
2

𝑣𝑖 − 𝑣0



Similarly,

sin 𝜃 =
sin 𝜃𝑖+1 − 𝜃 sin 𝜃𝑖

sin(𝛼𝑖)
+
sin(𝜃 − 𝜃𝑖) sin 𝜃𝑖+1

sin(𝛼𝑖)

As we know

0 = න

0

𝜋

cos 𝜃 , sin 𝜃 𝑑𝜃 =෍

𝑖=1

𝑛

න

𝜃𝑖

𝜃𝑖+1

cos 𝜃 , sin 𝜃 𝑑𝜃

=෍

𝑖=1

𝑛

න

𝜃𝑖

𝜃𝑖+1
sin 𝜃𝑖+1 − 𝜃

sin(𝛼𝑖)
cos 𝜃𝑖 , sin 𝜃𝑖

+
sin 𝜃 − 𝜃𝑖
sin 𝛼𝑖

(cos 𝜃𝑖+1 , sin 𝜃𝑖+1)𝑑𝜃

Proof
𝜙𝑖 =

𝜔𝑖

σ𝑗=1
𝑛 𝜔𝑗

,

𝜔𝑖 =
tan

𝛼𝑖−1
2

+ tan
𝛼𝑖
2

𝑣𝑖 − 𝑣0



Since 

න

𝜃𝑖

𝜃𝑖+1
sin 𝜃𝑖+1 − 𝜃

sin(𝛼𝑖)
𝑑𝜃 = න

𝜃𝑖

𝜃𝑖+1
sin 𝜃 − 𝜃𝑖
sin 𝛼𝑖

𝑑𝜃

=
1 − cos 𝛼𝑖
sin 𝛼𝑖

= tan
𝛼𝑖
2

Thus

෍

𝑖=1

𝑛

tan
𝛼𝑖
2

൫ cos 𝜃𝑖 , sin 𝜃𝑖

Proof
𝜙𝑖 =

𝜔𝑖

σ𝑗=1
𝑛 𝜔𝑗

,

𝜔𝑖 =
tan

𝛼𝑖−1
2

+ tan
𝛼𝑖
2

𝑣𝑖 − 𝑣0



Motivation of MVC

• The motivation behind the coordinates was an attempt to 
approximate harmonic maps by piecewise linear maps over 
triangulations, in such a way that injectivity is preserved.
• 𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 0



Motivation of MVC

• Suppose we want to approximate the solution 𝑢 with respect to 
Dirichlet boundary conditions, 𝑢|𝜕Ω = 𝑢0, by a piecewise linear 
function 𝑢𝑇 over some triangulation 𝑇 of Ω.

• Ω׬ 𝛻u𝑇
2 𝑑𝑥

• boundary conditions

• a sparse linear system

• 𝑢𝑇 𝑣0 = σ𝑖=1
𝑛 𝜙𝑖 𝑢𝑇(𝑣𝑖)

• Tutte’s embedding

• Mean value theorem:

𝑢 𝑣0 =
1

2𝜋𝑟
න
Γ

𝑢 𝑣 𝑑𝑠



Motivation of MVC

• Thus, we want to find

𝑢𝑇 𝑣0 =
1

2𝜋𝑟
න
Γ

𝑢𝑇 𝑣 𝑑𝑠

for 𝑟 sufficiently small that the disc 𝐵(𝑣0, 𝑟) is 
entirely contained in the union of the triangles 
containing 𝑣0. 

If above condition is satisfied → 𝑢𝑇 𝑣0 =
σ𝑖=1
𝑛 𝜙𝑖 𝑢𝑇(𝑣𝑖) where 𝜙𝑖 is, independent of 

the choice of 𝑟.

𝜙𝑖 =
𝜔𝑖

σ𝑗=1
𝑛 𝜔𝑗

,

𝜔𝑖 =
tan

𝛼𝑖−1
2

+ tan
𝛼𝑖
2

𝑣𝑖 − 𝑣0



Motivation of MVC

• Lemma: if 𝑓: 𝑇𝑖 → 𝑅 is any linear function then

න
Γ𝑖

𝑓 𝑣 𝑑𝑠 = 𝑟𝛼𝑖𝑓 𝑣0 + 𝑟2tan(
𝛼𝑖
2
)
𝑓 𝑣𝑖 − 𝑓(𝑣0)

||𝑣𝑖 − 𝑣0||
+
𝑓 𝑣𝑖+1 − 𝑓(𝑣0)

||𝑣𝑖+1 − 𝑣0||

• Proof: ∀𝑣 ∈ Γ𝑖, 𝑣 = 𝑣0 + 𝑟(cos𝜃, sin 𝜃)

and 𝑣𝑗 = 𝑣0 + 𝑟𝑗(cos𝜃𝑗 , sin 𝜃𝑗).

Then, ׬Γ𝑖
𝑓 𝑣 𝑑𝑠 = 𝑟 𝜃𝑖׬

𝜃𝑖+1 𝑓 𝑣 𝑑𝜃

Since 𝑓 is linear, and using barycentric coordinates

we have: 𝑓 𝑣 = 𝑓 𝑣0 + 𝜆1 𝑓 𝑣𝑖 − 𝑓 𝑣0
+𝜆2 𝑓 𝑣𝑖+1 − 𝑓 𝑣0

Γ𝑖



Motivation of MVC

• 𝜆1 =
𝐴1

𝐴
, 𝜆2 =

𝐴2

𝐴

• 𝐴1: ∆𝑣0𝑣𝑣𝑖+1 , 𝐴2: ∆𝑣0𝑣𝑖𝑣

• 𝐴 =
1

2
𝑟𝑖𝑟𝑖+1 sin 𝛼𝑖, 𝐴1 =

1

2
𝑟𝑟𝑖+1 sin(𝜃𝑖+1 − 𝜃), 

𝐴2 =
1

2
𝑟𝑖𝑟 sin(𝜃 − 𝜃𝑖)

• 𝜆1 =
𝑟 sin(𝜃𝑖+1−𝜃)

𝑟𝑖 sin 𝛼𝑖
, 𝜆2 =

𝑟 sin(𝜃−𝜃𝑖)

𝑟𝑖+1 sin 𝛼𝑖

න
Γ𝑖

𝑓 𝑣 𝑑𝑠 = 𝑟න
𝜃𝑖

𝜃𝑖+1

𝑓 𝑣 𝑑𝜃

= 𝑟න
𝜃𝑖

𝜃𝑖+1

𝑓 𝑣0 + 𝜆1 𝑓 𝑣𝑖 − 𝑓 𝑣0 + 𝜆2൫𝑓 𝑣𝑖+1

Γ𝑖



Motivation of MVC

• Proposition: Suppose the piecewise linear function 𝑢𝑇 ∶ Ω → 𝑅 satisfies 
the local mean value theorem, i.e., for each interior vertex 𝑣0, it satisfies 

𝑢𝑇 𝑣0 =
1

2𝜋𝑟
Γ׬ 𝑢𝑇 𝑣 𝑑𝑠 for some 𝑟 > 0 suitably small. Then 𝑢𝑇(𝑣0) is 

given by the convex combination in 𝑢𝑇 𝑣0 = σ𝑖=1
𝑛 𝜙𝑖 𝑢𝑇(𝑣𝑖) with the 

weights 𝜙𝑖 is

𝜙𝑖 =
𝜔𝑖

σ𝑗=1
𝑛 𝜔𝑗

,

𝜔𝑖 =
tan

𝛼𝑖−1
2

+ tan
𝛼𝑖
2

𝑣𝑖 − 𝑣0



Proof of Proposition

𝑢𝑇 𝑣0 =
1

2𝜋𝑟
න
Γ

𝑢𝑇 𝑣 𝑑𝑠 =
1

2𝜋𝑟
෍

𝑖=1

𝑛

න
Γ𝑖

𝑢𝑇 𝑣 𝑑𝑠

𝑢𝑇 𝑣0

=
1

2𝜋𝑟
෍

𝑖=1

𝑛

൭𝑟𝛼𝑖𝑢𝑇 𝑣0 Γ𝑖



Applications of MVC

• Parameterization
• Mean Value Coordinate

• Deformation
• Mean Value Coordinates for Closed Triangular Meshes

• Poisson image editing
• Coordinates for Instant Image Cloning

• Diffusion curves/surfaces
• Volumetric Modeling with Diffusion Surfaces



Parameterization

• Compute the coordinates 𝜙𝑖 directly from the vertices 𝑣0, . . . , 𝑣𝑘 ∈ 𝑅3



Deformation



Deformation



Poisson image editing



Concave Polygon Yellow indicates positive values 
Green indicates negative values



MVC doesn’t have

• Non-negativity
• All weights are positive

• Interior locality
• Interior locality holds, if, in addition to non-negativity, the coordinate 

functions have no interior extrema.





Outlines

• Introduction

• Barycentric coordinates on convex polygons

• Inverse bilinear coordinates

• Mean value coordinates

• Harmonic Coordinates

• A general construction



Harmonic Coordinates

𝛻2𝜙𝑖 𝑥 = 0, ∀𝑥 ∈ 𝑃
𝑠. 𝑡. 𝜙𝑖 𝜕𝑃 = ℎ𝑖 𝜕𝑃

ℎ𝑖 𝜕𝑃 : the (univariate) piecewise linear function such that ℎ𝑖 𝑣𝑗 =
𝛿𝑖,𝑗.

• Non-negativity: harmonic functions achieve their extrema at their 
boundaries.

• Interior locality: follows from non-negativity and the fact that 
harmonic functions possess no interior extrema.



Numerical solution

• 1. Allocate a regular grid of cells that is large enough to enclose the 
cage. 

• 2. Laplacian smooth: For each INTERIOR cell, replace the value of the 
cell with the average of the value of its neighbors. This Laplacian 
smoothing step is performed iteratively until the termination criterion 
is reached.

• A simple hierarchical finite difference solver
• By first solving the problem at a lower resolution, better starting points for 

the iteration can be obtained.





More papers

• Green Coordinates, 2008

• Complex Barycentric Coordinates with Applications to Planar Shape 
Deformation, 2009

• A Complex View of Barycentric Mappings, 2011

• Poisson Coordinates, 2013

• Cubic Mean Value Coordinates, 2013

• ……



Outlines

• Introduction

• Barycentric coordinates on convex polygons

• Inverse bilinear coordinates

• Mean value coordinates

• Harmonic Coordinates

• A general construction



Linear blend skinning

• Skeleton-subspace deformation



Linear blend skinning - input data

• Rest pose shape
• Represented as a polygon mesh

• The mesh connectivity is assumed to be constant, i.e., only vertex positions 
will change during deformations.

• Rest-pose vertices: 𝑣1, … , 𝑣𝑛 ∈ 𝑅3

• Bone transformations
• A list of matrices

• Spatial transformations aligning the rest pose of bone 𝑖 with its current 
(animated) pose.

• Skinning weights
• For vertex 𝑣𝑖, we have weights 𝑤𝑖,1, . . . , 𝑤𝑖,𝑚 ∈ 𝑅 . 

• Each weight 𝑤𝑖,𝑗 describes the amount of influence of bone 𝑗 on vertex 𝑖.



Linear blend skinning - Bone transformations



Linear blend skinning - Skinning weights



Deformed vertex positions

𝑣𝑖
𝑛𝑒𝑤 =෍

𝑗=1

𝑚

𝑤𝑖,𝑗𝑇𝑗𝑣𝑖 = ෍

𝑗=1

𝑚

𝑤𝑖,𝑗𝑇𝑗 𝑣𝑖

The latter form highlights the fact that the rest pose vertex 𝑣𝑖 is 
transformed by a linear combination (blend) of bone transformation 
matrices 𝑇𝑗.



Recap of properties

• Interpolation (Lagrange property)

• Smoothness 

• Non-negativity (𝜙𝑖 𝑥 ≥ 0)

• Interior locality

• Linear reproduction (σ𝑖=1
𝑛 𝜙𝑖 𝑥 𝑣𝑖 = 𝑥)

• Affine-invariance = Partition of unity (σ𝑖=1
𝑛 𝜙𝑖 𝑥 = 1)



Some papers

• Bounded Biharmonic Weights for Real-Time Deformation, 2011

• Local Barycentric Coordinates, 2014

• Linear Subspace Design for Real-Time Shape Deformation, 2015



Bounded Biharmonic Weights for Real-Time 
Deformation
• Real-time performance is critical for both interactive design and 

interactive animation.

• Among all deformation methods, linear blending and its variants 
dominate practical usage thanks to their speed
• each point on the object is transformed by a linear combination of a small 

number of affine transformations.

• Real-time object deformations would be easier with support for all 
handle types: points, skeletons, and cages.
• Goal: smooth and intuitive deformation 



Various handles

Points 
Bones
Cages



Handles - Points 

• Points are quick to place and easy to manipulate.

• They specify local deformation properties (position, rotation and 
scaling) that smoothly propagate onto nearby areas of the object. 



Handles - Bones

• Bones make some directions stiffer than others. 

• If a region between two points appears too supple, bones can 
transform it into a rigid limb.



Handles - Cages

• Cages allow influencing a significant portion of the object at once, 
making it easier to control bulging and thinning in regions of interest.



Bounded biharmonic weights



Properties

• Smoothness (∆2𝑤𝑗 = 0)
• The bounded biharmonic weights are 𝐶1 at the handles and 𝐶∞ everywhere 

else, provided that the posed boundary conditions are smooth.

• Non-negativity

• Shape-awareness: bi-Laplacian operator

• Partition of unity

• Locality and sparsity: just observation

• No local maxima: experimentally observed

• No Linear reproduction (σ𝑖=1
𝑛 𝜙𝑖 𝑥 𝑣𝑖 = 𝑥)



Properties



Properties





Local Barycentric Coordinates

• A local change in the value at a single control point will 
create a global change by propagation into the whole 
domain.

• Global nature
• The first one is the lack of locality and control over a deformation.

• The second drawback is scalability. 
• Most practical applications store barycentric coordinates using one scalar 

value per control point for every vertex of the target domain.



Formulation



Locality



Local extrema

• TV measures oscillation, and hence its minimization inhibits local 
extremal values. 



Demo



Linear Subspace Design for Real-Time Shape 
Deformation
• Linear reproduction

• Cot weights of Laplacian satisfy.

• ?



Demo



Simplification

Xiao-Ming Fu
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Simplification and approximation 

• Transform a given polygonal mesh into another mesh with fewer
faces, edges, and vertices.



Simplification and approximation 

• Transform a given polygonal mesh into another mesh with fewer
faces, edges, and vertices.

• The simplification or approximation procedure is usually controlled by 
user-defined quality criteria.



Curvature-preserved criteria

15002053 1000 500 100 50 4



Curvature-removed criteria

15002053 1000 500 100 50 4



Simplification applications

• Adjust the complexity of a geometric data set

• Since many decimation schemes work iteratively, i.e., they 
decimate a mesh by removing one vertex at a time, they 
usually can be inverted.
• Hierarchical method
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• Variational shape approximation



Vertex removal



Edge collapse



Half-edge collapse

After collapse: n(E) – 3, n(V) – 1, n(F) – 2.
According to Euler’ formula:  2 - 2m = n(V) + n(F) – n(E).
Half-edge collapsing would not change the genus of a mesh.
OpenMesh: collapse(), is_collapse_ok().



Topologically illegal (half-)edge collapses
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• Variational shape approximation



Incremental algorithms

• Removing one vertex at a time

• The iterative decimation procedure can take arbitrary user-defined 
criteria into account, according to which the next removal operation 
is chosen.



Quadric error metric (QEM)

• The squared distance of a point 𝑥 from the 
plane 𝑃𝑖: 

𝑑 𝑥, 𝑃𝑖 = 𝑛𝑖
𝑇𝑥 − 𝑑𝑖

2

𝑑𝑖 = 𝑛𝑖
𝑇𝑥𝑖

Denote  𝑥 = (𝑥, 1) and  𝑛𝑖 = (𝑛𝑖 , −𝑑𝑖).

Then:

𝑑 𝑥, 𝑃𝑖 =  𝑛𝑖
𝑇  𝑥
2
=  𝑥𝑇  𝑛𝑖  𝑛𝑖

𝑇  𝑥 =:  𝑥𝑇𝑄𝑖  𝑥
𝑃𝑖 = (𝑥𝑖 , 𝑛𝑖)

𝑥

Quadratic error Matrix 



Quadratic error Matrix 𝑄

• On vertices

𝑄𝑖
𝑣 =  

𝑗∈Ω(𝑖)

𝑄𝑗

• On edge
𝑄𝑒 = 𝑄1

𝑣 + 𝑄2
𝑣

𝑣𝑖 𝑣𝑗



QEM error

• QEM error On edge: 
 𝑣 = argmin

𝑣
𝑣𝑇𝑄𝑒𝑣

Note: 𝑄𝑒may not a full rank matric

• 𝑄 on  𝑣 is just 𝑄𝑒.



QEM Algorithm

Input: a mesh

Output: a simplified mesh

Initialization:

Compute the 𝑄𝑒 matrices for all the edges.

Compute the optimal contraction target  𝑣 for each edge. 

While 𝑁𝑣 > 𝑛 𝑎𝑛𝑑 𝐶𝑜𝑠𝑡𝑚𝑖𝑛 < 𝑡

The error  𝑣𝑇𝑄𝑒  𝑣 becomes the cost of the edge.

Place all the edges in a priority queue keyed on cost with minimum     

cost edge at the top.

Remove the edge of the least cost from the heap , collapse this 

edge, and update the costs of all edges involving.

End;
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Variational shape approximation (VSA)

• VSA is highly sensitive to features and symmetries and produces 
anisotropic meshes of high approximation quality. 



Variational shape approximation (VSA)

• The input shape is approximated by a set of proxies.
• A plane in space through the point 𝑥𝑖 with normal direction 𝑛𝑖.



Region representation

𝑅1 ∪⋯∪ 𝑅𝑘 = 𝑀

𝑀: a triangle mesh

𝑅 = 𝑅1, … , 𝑅𝑘 : a partition of 𝑀 into 𝑘 regions.

Proxies: 𝑃 = {𝑃1, … , 𝑃𝑘}, 𝑃𝑖 = (𝑥𝑖 , 𝑛𝑖)



Distance metrics between 𝑅𝑖 and 𝑃𝑖

• The squared orthogonal distance of 𝑥 from the plane 𝑃𝑖.

𝐿2 𝑅𝑖 , 𝑃𝑖 =  
𝑥∈𝑅𝑖

𝑛𝑖
𝑇𝑥 − 𝑛𝑖𝑥𝑖

2
𝑑𝐴

• A measure of the normal field:

𝐿2,1 𝑅𝑖 , 𝑃𝑖 =  
𝑥∈𝑅𝑖

𝑛(𝑥) − 𝑛𝑖
2𝑑𝐴



Goal of VSA

• Given a number 𝑘 and an error metric 𝐸 (𝐿2 or 𝐿2,1), find a set 𝑅 =
𝑅1, … , 𝑅𝑘 of regions and a set 𝑃 = 𝑃1, … , 𝑃𝑘 of proxies such that 

the global distortion 

𝐸 𝑅, 𝑃 = 

𝑖=1

𝑘

𝐸 𝑅𝑖 , 𝑃𝑖

is minimized.



Lloyd’s clustering algorithm

• The algorithm iteratively alternates between a geometry partitioning 
phase and a proxy fitting phase.

• Geometry partitioning phase
• a set of regions that best fit a given set of proxies

• Proxy fitting phase
• the partitioning is kept fixed and the proxies are adjusted

• Initialization
• randomly picking 𝑘 triangles as 𝑅
• The planes of 𝑘 triangles are used to initialize 𝑃



Geometry partitioning phase

• Modifies the set 𝑅 of regions to achieve a lower approximation error 
while keeping the proxies 𝑃 fixed.





Proxy fitting phase

• The partition 𝑅 is kept fixed, the proxies 𝑃𝑖 are adjusted in order to 
minimize approximation error.

• 𝐿2 metric
• The best proxy is the least-squares fitting plane.

• 𝐿2,1 metric
• The proxy normal 𝑛𝑖 is just the area-weighted average of the triangle normals.





Deformation
Xiao-Ming Fu
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Definition

• The deformation of a given surface 𝑆 into the desired surface 𝑆′

• a displacement 𝑑(𝑝) on each vertex 𝑝 ∈ 𝑆

• 𝑆′ = 𝑝 + 𝑑 𝑝 𝑝 ∈ 𝑆}

• The user controls the deformation by 
• prescribing displacements ഥ𝑑𝑖 for a set of vertices 𝑝𝑖 ∈ 𝐻 ⊂ 𝑆.

• constraining certain parts 𝐹 stay fixed.

• handles

• The main question: determine the displacements for vertices in 
𝑆\(𝐻 ∪ 𝐹).





Two classes of shape deformations

• Surface-based deformations
• The displacement is defined on each vertex

• A high degree of control, since each vertex can be constrained individually.

• The robustness and efficiency of the involved computations are strongly 
affected by the mesh complexity and the triangle quality of the original 
surface 𝑆.

• Space deformations
• Displacement is defined on each point in the space.

• Smooth.
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Transformation Propagation

• Propagating the user-defined handle transformation:

1. specify the support region of the deformation

2. specify a handle region within the support region

3. the handle is transformed using some modeling interface

4. propagate the transformation of handle and damp within 
the support region
leading to a smooth blending between the transformed handle and the fixed 

region





Smooth blend

• Controlled by a scalar field:
• 1 is at the handle;

• 0 is at the fixed region;

• smoothly blends between 1 and 0 within the support region.

• One method:
• 𝑑𝐹 𝑝 : distance from 𝑝 to the fixed region

• 𝑑𝐻(𝑝): distance from 𝑝 to the handle

𝑠 𝑝 =
𝑑𝐹 𝑝

𝑑𝐹 𝑝 + 𝑑𝐻(𝑝)



Harmonic field

∆𝑠 𝑝𝑖 = 0 ∀𝑝𝑖 ∈ 𝑅

𝑠 𝑝𝑖 = 1 ∀𝑝𝑖 ∈ 𝐻

𝑠 𝑝𝑖 = 0 ∀𝑝𝑖 ∈ 𝐹

Simple to implement



Discussion

• simple and efficient to compute

• distance-based propagation of transformations will typically not result 
in the geometrically most intuitive solution.
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Multi-scale deformations

• Main idea: decompose the object into two frequency bands using the 
smoothing and fairing techniques.
• the low frequencies correspond to the smooth global shape;

• the high frequencies correspond to the fine-scale details.

• Goal: deform the low frequencies (global shape) while preserving the 
high-frequency details





Pipeline

• First a low-frequency representation of the given surface 𝑆 is 
computed by removing the high frequencies, yielding a smooth base 
surface 𝐵. The geometric detail 𝐷 = 𝑆 ⊖ 𝐵.

• Deform the 𝐵 to 𝐵′

• Adding the geometric details onto 𝐵′: 𝑆′ = 𝐵′ ⊕𝐷

• ⊖: decomposition

• ⊕: reconstruction

• mesh smoothing or fairing



Representation for the geometric detail

• The straightforward representation:  a vector-valued displacement 
function
• associates a displacement vector to each point on the base surface.

• per-vertex displacement vectors

• 𝑝𝑖 = 𝑏𝑖 + ℎ𝑖, 𝑝𝑖 ∈ 𝑆, 𝑏𝑖 ∈ 𝐵, ℎ𝑖 ∈ 𝑅3

• Encoded in local frame
ℎ𝑖 = 𝛼𝑖𝑛𝑖 + 𝛽𝑖𝑡𝑖,1 + 𝛾𝑖𝑡𝑖,2

𝑛𝑖:normal

𝑡𝑖,1, 𝑡𝑖,2: two tangent vectors



Encoded in local frame

• When the base surface 𝑆 is deformed to 𝑆′

ℎ𝑖
′ = 𝛼𝑖𝑛𝑖

′ + 𝛽𝑖𝑡𝑖,1
′ + 𝛾𝑖𝑡𝑖,2

′

𝑝𝑖
′ = 𝑏𝑖

′ + ℎ𝑖
′



Outline

• Definition

• Transformation Propagation

• Multi-Scale Deformation

• Differential Coordinates

• Deformation transfer

• As-Rigid-As-Possible surface deformation

• Freeform Deformation
• Meshless mapping

• Volumetric Deformation
• Tetrahedral mapping



Gradient-Based Deformation

• deform the surface by
• 1. manipulating the original surface gradients

• 2. finding the deformed surface that matches the target gradient field in the 
least-squares sense



Gradient-Based Deformation

• Gradient of the coordinate function on facet 𝑓𝑖

𝛻𝑝𝑖 =

𝛻𝑝𝑥,𝑖
𝛻𝑝𝑦,𝑖
𝛻𝑝𝑧,𝑖

=: 𝐽𝑖 ∈ 𝑅3×3

The rows of 𝐽𝑖 are just the gradients of the 𝑥-, 𝑦- and 𝑧-coordinates. 

• Manipulation: 𝐽𝑖
′ = 𝑀𝑖𝐽𝑖

• 𝑀𝑖: local rotation/scale/shear, (discussed later)

• breaking up the mesh. (similar to ARAP parameterization)



Find new vertex positions 𝑝𝑖
′

• Goal: the gradient of 𝑝𝑖
′ are as close as possible to 𝐽𝑖

′

: new vertex position

𝐴𝑖: the area of facet 𝑓𝑖
𝛻𝑝𝑖

′: the gradient is defined on the original surface (just replace the 
function value)

Solving Laplace equation for 𝑥, 𝑦, 𝑧.

Poisson equation.

𝐽𝑖
′ = 𝑀𝑖𝐽𝑖



Laplacian-Based Deformation

• manipulate per-vertex Laplacians instead of per-face gradients

• 1. compute initial Laplace coordinates 𝛿𝑖 = Δ(𝑝𝑖)

• 2. manipulate them to 𝛿𝑖
′ = 𝑀𝑖𝛿𝑖, (discussed later)

• 3. find new coordinates 𝑝𝑖
′ that match the target Laplacian coordinates

𝐸 =෍

𝑖

𝐴𝑖 Δ(𝑝𝑖
′) − 𝛿𝑖

′
𝐹
2

𝐴𝑖: local average area for vertex 𝑖.

bi-Laplacian system

Uniform Laplace or cot Laplace

The cot weight Δ(𝑝𝑖
′) is same to Δ(𝑝𝑖).



Local Transformations 𝑀𝑖 for face

• Propagation of deformation gradients.

• The user manipulates the handle by prescribing an affine transformation
𝑇 𝑥 = 𝑀𝑥 + 𝑡

𝑀: gradient of 𝑇 𝑥

• propagate this matrix over the deformable region and damp it using the 
smooth scalar field.

• Rotations should be interpolated differently than scalings.



Propagation of deformation gradients

• Polar decomposition:
𝑀 = 𝑅 ∙ 𝑆
𝑅 = 𝑈𝑉𝑇

𝑆 = 𝑉Σ𝑉𝑇

Where 
𝑀 = 𝑈Σ𝑉𝑇

𝑅: rotation;    𝑆: scaling

rotation and scaling components are then interpolated separately



Propagation of deformation gradients

• Rotation: quaternion interpolation 𝑅𝑖
• Scaling: linear interpolation 𝑆𝑖 = 1 − 𝑠𝑖 𝑆 + 𝑠𝑖 ∙ 𝐼𝑑

• 𝑀𝑖 = 𝑅𝑖 ∙ 𝑆𝑖

• Discussion:
• works very well for rotations

• insensitive to handle translations



Local Transformations 𝑀𝑖 for vertex

• Implicit optimization: simultaneously optimize for both the new 
vertex positions 𝑝𝑖

′ and the local rotations 𝑀𝑖.

𝐸 =෍

𝑖

𝐴𝑖 Δ(𝑝𝑖
′) − 𝑀𝑖𝛿𝑖 𝐹

2

• To avoid a nonlinear optimization and rigid transformation is desired
• linearized similarity transformations, skew-symmetric matrices

𝑀𝑖 =

𝑠𝑖 −ℎ𝑖,𝑧 ℎ𝑖,𝑦
ℎ𝑖,𝑧 𝑠𝑖 −ℎ𝑖,𝑥
−ℎ𝑖,𝑦 ℎ𝑖,𝑥 𝑠𝑖



Local Transformations 𝑀𝑖 for vertex

• To determine 𝑠𝑖, ℎ𝑖,𝑥, ℎ𝑖,𝑦 and ℎ𝑖,𝑧:
𝑀𝑖 𝑝𝑖 − 𝑝𝑗 = 𝑝𝑖

′ − 𝑝𝑗
′ , ∀𝑗 ∈ Ω(𝑖)

Then:

𝑀𝑖 is a linear combinations of 𝑝𝑖
′.

𝐸 = σ𝑖 𝐴𝑖 Δ(𝑝𝑖
′) − 𝑀𝑖𝛿𝑖 𝐹

2 becomes a quadratic energy.

Linear least-squares problem, which can be solved efficiently.

The linearized transformations lead to artifacts in the case of large 
rotations.
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Deformation transfer



Deformation transfer

• The goal of deformation transfer: transfer the change in shape exhibited by the 
source deformation onto the target.

• Input: source deformation 
• a collection of affine transformations tabulated for each triangle of the source mesh.

• The three vertices of a triangle before and after deformation do not fully 
determine the affine transformation.



Affine transformation

• 𝑣𝑖 ∈ undeformed, ෤𝑣𝑖 ∈ deformed

• add a fourth vertex in the direction perpendicular 
to the triangle.

𝑣4 = 𝑣1 + 𝑛
𝑛 = (𝑣2 − 𝑣1) × (𝑣3 − 𝑣1)/| 𝑣2 − 𝑣1 × 𝑣3 − 𝑣1 |

1. an analogous computation for ෤𝑣4
2. How to compute the Affine transformation?

𝑣1

𝑣2
𝑣3



Transfer

• Transfer the source transformations via the correspondence map to 
the target.

E =෍

𝑖

𝑆𝑗 − 𝑇𝑗 𝐹

2

1. Require one-to-one correspondence between source and target 
model.

2. Least squares.
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As-Rigid-As-Possible Surface Modeling

• Goal: preserve shape meaning that an object is only rotated or 
translated, but not scaled or sheared.
• small parts of the shape should change as rigidly as possible

• Energy:

𝐸 =෍

𝑖=1

𝑁𝑣

𝑤𝑖 ෍

𝑗∈Ω(𝑖)

𝑤𝑖𝑗 𝑝𝑖
′ − 𝑝𝑗

′ − 𝑅𝑖 𝑝𝑖 − 𝑝𝑗
2

𝑤𝑖, 𝑤𝑖𝑗: fixed cell and edge weights.

𝑤𝑖𝑗: cot weight; 𝑤𝑖: local average area

Variables: 𝑅𝑖 and 𝑝𝑖
′



Local step

• Given 𝑝𝑖
′, compute 𝑅𝑖

𝐸𝑖 = ෍

𝑗∈Ω(𝑖)

𝑤𝑖𝑗 𝑝𝑖
′ − 𝑝𝑗

′ − 𝑅𝑖 𝑝𝑖 − 𝑝𝑗
2

Set 𝑒𝑖𝑗
′ = 𝑝𝑖

′ − 𝑝𝑗
′ , 𝑒𝑖𝑗 = 𝑝𝑖 − 𝑝𝑗,

𝐸𝑖 = ෍

𝑗∈Ω(𝑖)

𝑤𝑖𝑗 𝑒𝑖𝑗
′ − 𝑅𝑖𝑒𝑖𝑗

𝑇
𝑒𝑖𝑗
′ − 𝑅𝑖𝑒𝑖𝑗

= ෍

𝑗∈Ω(𝑖)

𝑤𝑖𝑗 𝑒𝑖𝑗
′𝑇𝑒𝑖𝑗

′ − 2𝑒𝑖𝑗
′𝑇𝑅𝑖𝑒𝑖𝑗 + 𝑒𝑖𝑗

𝑇𝑒𝑖𝑗

𝐸 =෍

𝑖=1

𝑁𝑣

𝑤𝑖 ෍

𝑗∈Ω(𝑖)

𝑤𝑖𝑗 𝑝𝑖
′ − 𝑝𝑗

′ − 𝑅𝑖 𝑝𝑖 − 𝑝𝑗
2



Local step

𝑎𝑟𝑔min
𝑅𝑖

෍

𝑗∈Ω(𝑖)

𝑤𝑖𝑗 𝑒𝑖𝑗
′𝑇𝑒𝑖𝑗

′ − 2𝑒𝑖𝑗
′𝑇𝑅𝑖𝑒𝑖𝑗 + 𝑒𝑖𝑗

𝑇𝑒𝑖𝑗

= 𝑎𝑟𝑔max
𝑅𝑖

෍

𝑗∈Ω(𝑖)

𝑤𝑖𝑗2𝑒𝑖𝑗
′𝑇𝑅𝑖𝑒𝑖𝑗 = 𝑎𝑟𝑔max

𝑅𝑖
𝑇𝑟 ෍

𝑗∈Ω(𝑖)

𝑤𝑖𝑗𝑅𝑖𝑒𝑖𝑗𝑒𝑖𝑗
′𝑇

= 𝑎𝑟𝑔max
𝑅𝑖

𝑇𝑟 ෍

𝑗∈Ω(𝑖)

𝑤𝑖𝑗𝑅𝑖𝑒𝑖𝑗𝑒𝑖𝑗
′𝑇 =𝑎𝑟𝑔max

𝑅𝑖
𝑇𝑟 𝑅𝑖 ෍

𝑗∈Ω(𝑖)

𝑤𝑖𝑗𝑒𝑖𝑗𝑒𝑖𝑗
′𝑇

𝐸 =෍

𝑖=1

𝑁𝑣

𝑤𝑖 ෍

𝑗∈Ω(𝑖)

𝑤𝑖𝑗 𝑝𝑖
′ − 𝑝𝑗

′ − 𝑅𝑖 𝑝𝑖 − 𝑝𝑗
2



Local step

Set 𝑆𝑖 = σ𝑗∈Ω(𝑖)𝑤𝑖𝑗𝑒𝑖𝑗𝑒𝑖𝑗
′𝑇 and 𝑆𝑖 = 𝑈𝑖Σ𝑖𝑉𝑖

𝑇.

If 𝑀 is a positive-symmetric-definite matrix then for any orthogonal 𝑅, 
𝑇𝑟(𝑀) > 𝑇𝑟(𝑅𝑀).

The rotation matrix 𝑅𝑖 maximizing 𝑇𝑟(𝑅𝑖𝑆𝑖) is obtained when 𝑅𝑖𝑆𝑖 is 
symmetric positive semi-definite.

⟹𝑅𝑖 = 𝑉𝑖𝑈𝑖
𝑇.

𝐸 =෍

𝑖=1

𝑁𝑣

𝑤𝑖 ෍

𝑗∈Ω(𝑖)

𝑤𝑖𝑗 𝑝𝑖
′ − 𝑝𝑗

′ − 𝑅𝑖 𝑝𝑖 − 𝑝𝑗
2



Global step

• Given 𝑅𝑖, compute 𝑝𝑖
′

• Linear squares, easy to solve

• Initial deforamation
• 1. Previous frame (for interactive manipulation)

• 2. Naive Laplacian editing

• …

𝐸 =෍

𝑖=1

𝑁𝑣

𝑤𝑖 ෍

𝑗∈Ω(𝑖)

𝑤𝑖𝑗 𝑝𝑖
′ − 𝑝𝑗

′ − 𝑅𝑖 𝑝𝑖 − 𝑝𝑗
2







Outline

• Definition

• Transformation Propagation

• Multi-Scale Deformation

• Differential Coordinates

• Deformation transfer

• As-Rigid-As-Possible surface deformation

• Freeform Deformation
• Meshless mapping

• Volumetric Deformation
• Tetrahedral mapping



Space deformations

• Deform the ambient space and thus implicitly deform the embedded objects.



Lattice-Based Freeform Deformation

• Freeform deformation represents the space deformation by a trivariate
tensor-product spline function

𝑑 𝑢, 𝑣, 𝑤 =෍

𝑖

෍

𝑗

෍
𝑘
𝛿𝑐𝑖𝑗𝑘 𝑁𝑖(𝑢)𝑁𝑗(𝑣)𝑁𝑘(𝑤)

1. 𝑁𝑖 are B-spline basis functions

2. 𝛿𝑐𝑖𝑗𝑘 = 𝑐𝑖𝑗𝑘
′ − 𝑐𝑖𝑗𝑘 displacements of the control points 𝑐𝑖𝑗𝑘

3. Original vertex 𝑝𝑖 satisfying 

𝑝𝑖 =෍

𝑖

෍

𝑗

෍
𝑘
𝑐𝑖𝑗𝑘 𝑁𝑖(𝑢)𝑁𝑗(𝑣)𝑁𝑘(𝑤)

New vertex 𝑝𝑖
′ = 𝑝𝑖 + 𝑑 𝑢, 𝑣, 𝑤 = σ𝑖σ𝑗σ𝑘 𝑐𝑖𝑗𝑘

′ 𝑁𝑖(𝑢)𝑁𝑗(𝑣)𝑁𝑘(𝑤)



Deformation

• A handle-based interface for direct manipulation.

• Input a set of displacement constraints: ҧ𝑑𝑖 for H ∪ 𝐹 =
{𝑝1, … , 𝑝𝑚}.

• Least squares:

𝐸 =෍

𝑙=1

𝑚

ҧ𝑑𝑖 −෍

𝑖

෍

𝑗

෍
𝑘
𝛿𝑐𝑖𝑗𝑘 𝑁𝑖(𝑢)𝑁𝑗(𝑣)𝑁𝑘(𝑤)

2

After getting 𝑐𝑖𝑗𝑘
′ , the deformed surface is determined.





Discussion

• Two drawbacks:
• Displacement constraints cannot be satisfied exactly.
• The placement of basis functions on a regular grid.

•How to support concave region?



Cage-Based Freeform Deformation

• A generalization of the lattice-based freeform deformation

• This cage typically is a coarse, arbitrary triangle mesh enclosing the 
object to be modified.



Deformation 

• The vertices 𝑝𝑖 of the original mesh 𝑆:

𝑝𝑖 =෍

𝑙=1

𝑛

𝑐𝑙𝜑𝑙(𝑝𝑖)

𝑛: the vertex number of cage mesh

𝜑𝑙(𝑝𝑖): generalized barycentric coordinates

• Deform by manipulating the cage vertices 𝑐𝑙 ⟼ 𝑐𝑙 + 𝛿𝑐𝑙, displacement:

𝑑 𝑝𝑖 =෍

𝑙=1

𝑛

𝛿𝑐𝑙𝜑𝑙(𝑝𝑖)
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How to implement ARAP 
tetrahedral deformation?



Mappings
Xiao-Ming Fu
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Mappings 𝑓: Ω ⊂ 𝑅𝑑 → 𝑅𝑑

• mesh-based mapping • meshless mapping

𝑓𝑡(𝒙) = 𝐽𝑡𝒙 + 𝒃𝑡

𝑡 𝑇

𝑓(𝒙) = 𝒙 + 
𝑖=1

𝑚

𝒄𝑖𝐵𝑖(𝒙)



Applications

Parameterization Deformation



Application - Mesh Improvement

[Gregson et al. 2011] Improved results



Application – Compatible remeshing

All meshes share a common connectivity.



Application - Learning



Basic requirements

𝑡

𝑇

𝒙𝟐

𝒑𝟎

𝒑𝟏 𝒑𝟐

𝒙𝟎

𝑇

𝒑𝟎

𝒑𝟐 𝒑𝟏
Negative singed area

• Foldover-free:
• No realistic material can be 

compressed to zero or even 
negative volume. 

• Flipped elements correspond to 
physically impossible 
deformation.

• Inverted elements lead invalidity 
for following applications, for 
example, remeshing.

• …… det 𝐽 𝑓 𝑥 > 0



Basic goal – low distortion

𝑡

𝒙𝟏 𝒙𝟐

𝒙𝟎 𝑇

𝒑𝟏

𝒑𝟐

𝒑𝟎

𝑇𝒑𝟏
𝒑𝟐

𝒑𝟎

𝒑𝟎

𝒑𝟏

𝒑𝟐

𝑇

rotate

rotate + scale

affine

• Distortion
• Rotation: rigid transformation

Isometric = conformal + equiareal

𝛿𝑖𝑠𝑜 = max{𝜎𝑚𝑎𝑥 ,
1

𝜎𝑚𝑖𝑛
}

• Similar transformation

Conformal

𝛿𝑐𝑜𝑛 = 𝜎𝑚𝑎𝑥/𝜎𝑚𝑖𝑛
• Affine transformation with positive 

determinant

• Our goal

• As Rigid As Possible

• As similar as Possible

𝜎1,…, 𝜎𝑑: singular values of 𝐽𝑡



Common distortion metrics 𝐷(𝑓)

•Common conformal distortion
• LSCM:  𝑡𝐴𝑡 𝜎1 − 𝜎2

2

• MIPS:  𝑡
𝜎1

𝜎2
+
𝜎2

𝜎1

•Common isometric distortion
• ARAP:  𝑡𝐴𝑡 𝜎1 − 1

2 + 𝜎2 − 1
2

• AMIPS:  𝑡
𝜎1

𝜎2
+
𝜎2

𝜎1
+

1

𝜎2𝜎1
+ 𝜎2𝜎1

• Symmetric Dirichlet:  𝑡𝐴𝑡 𝜎1
2 + 𝜎1

−2 + 𝜎2
2 + 𝜎2

−2



Formulation

min
𝑓
𝐷(𝑓)

s. t. det 𝐽 𝑓 𝑥 > 0, ∀𝑥 ∈ 𝑀
𝑆 𝑓 ≤ 0

𝑆 𝑓 ≤ 0: specific constraints for applications

𝐷(𝑓): distortion metric

𝑀: input mesh or domain
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Most-Isometric ParameterizationS (MIPS)
[Hormann and Greiner 2000]

• Mapping:  a triangle mesh → 2D parameterization region

𝑡 𝑇

𝑓𝑡(𝒙) = 𝐽𝑡𝒙 + 𝒃𝑡



MIPS energy

penalize degenerate triangles

degenerate 
triangle t

det 𝐽𝑡 → 0 𝐸𝑚𝑖𝑝𝑠,𝑡
2𝐷 → ∞

Optimal value when 𝜎1 = 𝜎2

• MIPS energy on triangle 𝑡

𝐸𝑚𝑖𝑝𝑠,𝑡
2𝐷 =

𝜎1
𝜎2
+
𝜎2
𝜎1
= 𝐽𝑡 𝐹 𝐽𝑡

−1
𝐹 =
𝑡𝑟𝑎𝑐𝑒(𝐽𝑡

𝑇𝐽𝑡)

det(𝐽𝑡)

a conformal energy



MIPS optimization –min  𝑡𝐸𝑚𝑖𝑝𝑠,𝑡
2𝐷

Initial valid 
mapping

Randomly pick 
a vertex 𝒑

Update 𝒑 using  
Newton’s method

Output valid 
mapping

𝒑 𝒑′



MIPS discussion

• Advantage: penalize degenerate triangles

• Disadvantages:

• only for 2D conformal mapping

• easily be trapped by local minimum

• no strong penalization on maximal distortion
MIPS: 
𝜹𝒎𝒂𝒙
𝒄𝒐𝒏 = 𝟏𝟓. 𝟕𝟐

Time: 7.09s

AMIPS: 
𝜹𝒎𝒂𝒙
𝒄𝒐𝒏 = 𝟑. 𝟗𝟔

Time: 1.68s



Maintenance-based methods

• 1. An initial mapping that satisfies the constraints.

• 2. Reduce the distortion as much as possible while not violating the 
constraints.

• Parameterizations:
• Initialization: Tutte’s embedding

• distortion metrics

• Solvers



Complex solvers

• AMIPS: Computing locally injective mappings by advanced MIPS (2015)

• AQP: Accelerated Quadratic Proxy for Geometric Optimization (2016)

• SLIM: Scalable locally injective mappings (2017)

• CM: Geometric optimization via composite majorization (2017)

• AKVF: Isometry‐Aware Preconditioning for Mesh Parameterization (2017)

• ……
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Bounded distortion mapping [Lipman 2012] 

• Goal: explicitly bound the conformal distortion

𝑇

𝑓𝑡(𝒙) = 𝐽𝑡𝒙 + 𝒃𝑡

𝐽𝑡 =
𝑎𝑡 𝑏𝑡
𝑐𝑡 𝑑𝑡

𝒃𝑡 =
𝑏𝒕,𝒙
𝑏𝒕,𝒚

Constraints: 𝛿𝑡
𝑐𝑜𝑛 < 𝐾, 𝑑𝑒𝑡 𝐽𝑡 > 0

non-linear and non-convex



Rewrite the constraints

𝐽𝑡 =
𝑎𝑡 + 𝑐𝑡 𝑑𝑡 − 𝑏𝑡
𝑑𝑡 + 𝑏𝑡 𝑎𝑡 − 𝑐𝑡

𝜎𝑚𝑎𝑥 = 𝑎𝑡
2 + 𝑏𝑡

2 + 𝑐𝑡
2 + 𝑑𝑡

2

𝜎𝑚𝑖𝑛 = 𝑎𝑡
2 + 𝑏𝑡

2 − 𝑐𝑡
2 + 𝑑𝑡

2

𝑑𝑒𝑡 𝐽𝑡 > 0 𝑐𝑡
2 + 𝑑𝑡

2 < 𝑎𝑡
2 + 𝑏𝑡

2

𝛿𝑡
𝑐𝑜𝑛 < 𝐾 𝑐𝑡

2 + 𝑑𝑡
2 ≤
𝐾 − 1

𝐾 + 1
𝑎𝑡
2 + 𝑏𝑡

2

}
𝑟𝑡 ≤ 𝑎𝑡

2 + 𝑏𝑡
2

𝑐𝑡
2 + 𝑑𝑡

2 ≤
𝐾 − 1

𝐾 + 1
𝑟𝑡

𝑟𝑡 > 0 Convex

Convex

Non-convex

𝛿𝑡
𝑐𝑜𝑛 < 𝐾, 𝑑𝑒𝑡 𝐽𝑡 > 0



maximal convex subset

𝛼𝑗 = 𝑎𝑗 + 𝑖 ∙ 𝑏𝑗

𝑟𝑡 ≤ 𝑎𝑡
2 + 𝑏𝑡

2 𝑟𝑡 ≤ 𝑎𝑡 Convex

𝑡

Local frame

Local frame changes, 𝑎𝑡 changes.
Local frame is also a variable.



Optimization

• Objective function: 
• LSCM: 𝐸 =  𝑡𝐴𝑟𝑒𝑎(𝑡) ∙ (𝑐𝑡

2 + 𝑑𝑡
2)

• ARAP: 𝐸 =  𝑡𝐴𝑟𝑒𝑎(𝑡) ∙ 𝑎𝑡 − 1
2 + 𝑏𝑡

2 + 𝑐𝑡
2 + 𝑑𝑡

2

• Optimization:
• Fix the local frame on each triangle: Second-Order Cone Programming (SOCP);

• Update local frame to let 𝑏𝑡 = 0.

𝐽𝑡 =
𝑎𝑡 + 𝑐𝑡 𝑑𝑡 − 𝑏𝑡
𝑑𝑡 + 𝑏𝑡 𝑎𝑡 − 𝑐𝑡

𝜹𝒎𝒂𝒙
𝒄𝒐𝒏 = 𝟐𝟔. 𝟗𝟖

Time: 4.03s

1. How to choose K?
2. The speed is slow.



Local/global formulation

• Practical Foldover-Free Volumetric Mapping Construction 
(PG 2019)



27Problem

Source tetrahedral mesh
Foldover-free 

volumetric map

Input Output

Initial 

volumetric map



28Preliminaries

 Signed singular value decomposition

𝐽𝑖 𝐮 = 𝑈𝑖𝑆𝑖𝑉𝑖
𝑇 , 𝑆𝑖 = 𝑑𝑖𝑎𝑔(𝜎𝑖,1, 𝜎𝑖,2, 𝜎𝑖,3)

𝜎𝑖,1 ≥ 𝜎𝑖,2 ≥ 𝜎𝑖,3 .

 Foldover-free constraints

det 𝐽𝑖 𝐮 > 0, 𝑖 = 1,⋯ ,𝑁 ⟺ 𝜎𝑖,3 > 0

 Conformal distortion

𝜏 𝐽𝑖 𝐮 = 𝜎𝑖,1/𝜎𝑖,3

 Bounded conformal distortion constraints

1 ≤ 𝜏 𝐽𝑖 𝐮 ≤ 𝐾



29Constraints

Foldover-free 

constraints

det 𝐽𝑖 𝐮 > 0

Bounded conformal 

distortion constraints

1 ≤ 𝜏 𝐽𝑖 𝐮

𝜏 𝐽𝑖 𝐮 ≤ 𝐾

𝜎𝑖,3 > 0, 𝜏 𝐽𝑖 =  𝜎𝑖,1 𝜎𝑖,3

𝜎𝑖,1 ≥ 𝜎𝑖,2 ≥ 𝜎𝑖,3

𝐾 = max
𝑖=1,⋯,𝑁

𝜏 𝐽𝑖

𝜏 𝐽𝑖 ≥ 1, 𝜎𝑖,3 > 0, 𝜎𝑖,3 > 0 ?
It is difficult to satisfy the constraints!



30Our idea

1 ≤ 𝜏 𝐽𝑖 𝐮 ≤ 𝐾

Alternatively solving 𝐾 and 𝐮

 Update K: generate a conformal distortion bound;

 Update 𝐮 : project the mapping into the bounded

distortion space;

 If there are foldovers, go to Step 1;

Input:
initial mapping

Update bound 𝐾

Update vertices 𝐮

Output:
Foldover-free 

mapping
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 Monotone projection

ℋ𝑖 = 𝐻𝑖|1 ≤ 𝜏(𝐻𝑖) ≤ 𝐾 : bounded conformal distortion space.

Update vertices 𝐮

min
𝐮
𝐸𝑑 =  

𝑖=1,⋯,𝑁

𝐽𝑖 𝐮 − 𝐻𝑖 𝐹
2 ,

𝑠. 𝑡. 𝐻𝑖 ∈ ℋ𝑖 , 𝑖 = 1,⋯ ,𝑁,

𝐴𝐮 = 𝑏.

Local-global solver
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 Local-global solver

Local step

Fix 𝐮 and 𝐽𝑖, solve 𝐻𝑖

min
𝐮
𝐸𝑑 =  

𝑖=1,⋯,𝑁

𝐽𝑖 𝐮 − 𝐻𝑖 𝐹
2 ,

𝑠. 𝑡. 𝐻𝑖 ∈ ℋ𝑖 , 𝑖 = 1,⋯ ,𝑁,

Global step

Fix 𝐻𝑖, solve 𝐮

min
𝐮
𝐸𝑑 =  

𝑖=1,⋯,𝑁

𝐽𝑖 𝐮 − 𝐻𝑖 𝐹
2 ,

𝑠. 𝑡. 𝐴𝐮 = 𝑏

Very slow convergence…

Update vertices 𝐮
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 Anderson acceleration method [Peng et al. 2018]

Update vertices 𝐮



34Why update bound 𝐾?

Projection cannot 

eliminate all foldovers
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 Bound generation

𝐾𝑛𝑒𝑤 = 𝛽𝐾

Update bound 𝐾

𝛽 = 2

initialize 𝐾 = 4
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 Apply a maintenance-based method 

Post-optimization

Average / maximum 

conformal distortion: 

2.72 / 107.10

Average / maximum 

conformal distortion: 

2.08  / 22.61

Before post-optimization After post-optimization

Source tetrahedral mesh



37Recap of our algorithm



Outlines

• Introduction

• Maintenance-based methods

• Bounded distortion methods

• Representation-based method
• Computing inversion-free mappings by simplex assembly



Affine transformation

Edge assembly constraints:
𝐴𝑖(𝑣𝑎 − 𝑣𝑏) = 𝐴𝑗(𝑣𝑎 − 𝑣𝑏)

𝑡𝑖

𝑡𝑗

𝑣𝑎 𝑣𝑏

Key observation:  the parameter space 
is a 2D triangulation, uniquely defined 
by all the AFFINE TRANSFORAMTIONS 
on the triangles.



Key idea

• disassembly + assembly
• Treat affine transformation as 

variables

• Unconstrained optimization

(a) (b)

(c) (d)



Unconstrained optimization problem

min
𝐴1,…,𝐴𝑁
𝑇1,…,𝑇𝑁

𝜆𝐸𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦 + 𝐸𝐶 + 𝜇𝐸𝑚

𝐸𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦:  summation of squares of edge, 

assembly constraints.

𝐸𝐶: Barrier function on distortion

𝐸𝑚: users’ designed energy

Disassembly: project initial 

𝐴𝑖
0 into feasible space.

𝜆k+1 = min 𝜆min ∙ max
𝐸𝐶,𝑘 + 𝜇𝐸𝑚,𝑘
𝐸𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦,𝑘

, 1 , 𝜆m𝑎𝑥

1. 𝐸𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦 dominates the energy, approach zero;

2. 𝜆m𝑎𝑥: avoid large distortion.

Assembly: unconstrained 
optimization. 





Spherical Parametrizations
Xiao-Ming Fu



Outlines
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• Hierarchical method
• Paper: Advanced Hierarchical Spherical Parameterizations

• Two hemispheres

• Curvature flow
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Spherical Parametrizations

• Homeomorphic mapping between a genus-0 closed surface to a sphere

• If the surface is represented by a triangle mesh, each triangle is projected to a 
spherical triangle

Genus-0 surface Sphere

C



Applications

• Correspondence

• Morphing

• Remeshing

• ……



Constraints

• Spherical constraints

• Bijective constraints
• No foldover

• Low distortion

𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐 = 𝒓𝟐

Non-linear, non-convex



Challenge

• No Tutte’s embedding method

• Non-linear, non-convex optimization problem.

Very challenging!!!



Outlines

• Definition & Applications

• Hierarchical method
• Paper: Advanced Hierarchical Spherical Parameterizations

• Two hemispheres

• Curvature flow



Hierarchical scheme pipeline

Input:
A triangle mesh

Decimation Refinement
Output:

A triangular 
sphere

15477 5869 2000 1000 500 4 50 500 8000 15477



Hierarchical scheme pipeline

Input:
A triangle mesh

Decimation Refinement
Output:

A triangular 
sphere

15477 5869 2000 1000 500 4 50 500 8000 15477



Decimation



Curvature error metric (CEM)

• Ejk
C =

𝑔(𝑉𝑗)

𝑑𝑒(𝑉𝑘𝑗)∙𝜌(𝑉𝑘𝑗)

• 𝑔(𝑉𝑗) is the Gaussian curvature at 𝑉𝑗

• 𝑑𝑒(𝑉𝑘𝑗) = 𝑒 𝑑 𝑉𝑘𝑗 −6
2

, 𝑑(𝑉𝑘𝑗) is the valence of 𝑉𝑘𝑗

• 𝜌(𝑉𝑘𝑗) =  𝑓 ∈Ω(𝑉𝑘𝑗)
𝑐𝑟(𝑓)

2×𝑖𝑟(𝑓)



Refinement

• Insert a new vertex on sphere

Such sphere kernel is non-empty !



Paper: Advanced Hierarchical Spherical Parameterizations



Flat-to-extrusive decimation strategy

Once an approximate surface has 
been spherically parameterized, the 
details of the input surface can be 
refined easily.

The shape contains highly curved 
areas at the beginning of 
refinement, it is hard to make the 
vertices evenly.

A flat-to-extrusive mesh decimation 
scheme, first simplifies the flat
regions by QEM and then the 
extrusive regions by CEM.

50 50



Depression illustration

• Long and thin triangles (red) may block the next vertex insertion.

Make the vertices evenly distribute 
over the sphere as much as possible.

It is easier to insert the later vertices.



Flexible group mesh refinement

• Group insertion
• Distortion control: iteratively insert vertices until the maximal distortion 

exceeds a threshold.

• Global optimization: reduce distortion.

• Former methods optimize the vertices after inserting fixed number of 
vertices.
• [Praun and Hoppe 2003], [Peng et al.2016], [Wan et al. 2012]

• This group scheme is much more robust and efficient.



Global optimization 

• We want to make the vertices evenly distribute on the sphere
• The ideal tetrahedron 𝑇

• 𝑆 is a equilateral triangle
• The area of spherical triangle 𝑆𝑡 is decided by the current face number
• Use 𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙 𝑒𝑥𝑐𝑒𝑠𝑠 to compute dihedral angle
• Use 𝐶𝑜𝑠𝑖𝑛𝑔 𝐿𝑎𝑤 to compute the angle 𝜃

• Optimizing the tetrahedral mesh
• Tetrahedron: formed by mesh triangles and coordinate origin
• Inexact block coordinate descent

• Only the topology information of origin mesh is used during the 
global optimization.

𝑆𝑛 𝑓 ∗ 𝐴𝑟𝑒𝑎 𝑆𝑡 = 4𝜋𝑟2

𝑇

𝜃



Global optimization energy

• 3D AMIPS energy:

𝐸𝑖
𝑐𝑜𝑛 =

1

8
( 𝐽𝑖 𝐹

2 ∙ 𝐽𝑖
−1

𝐹

2
− 1)

𝐸𝑖
vol =

1

2
(det 𝐽𝑖 + det 𝐽𝑖

−1)

𝐸𝑖
𝑖𝑠𝑜 =

1

2
(𝐸𝑖

𝑐𝑜𝑛 + 𝐸𝑖
vol)

𝐸𝑖
∗ = exp 𝐸𝑖

𝑖𝑠𝑜 𝑠

• s =
ln 𝜏

ln 𝐸max
𝑚 , 𝐸𝑖

𝑖𝑠𝑜 𝑠
< 𝜏

• Volume-based energy significantly improve the robustness of our refinement 
process.



Triangle-based failure cases

Narrow and long triangle 
make it hard to insert 
new vertex 

15477

37994



Post optimization

• Rigidly transfer each triangle 𝑡𝑖 of original mesh to  𝑡𝑖 on the sphere

• Form tetrahedron  𝑇𝑖 by the origin and three vertices of  𝑡𝑖

• Use AMIPS energy to optimize 𝑇𝑖 toward  𝑇𝑖

Before optimization After optimization

1.0

3.0

5.0

7.0

9.0



Results



Outlines

• Definition & Applications

• Hierarchical method
• Paper: Advanced Hierarchical Spherical Parameterizations

• Two hemispheres

• Curvature flow



Pipeline





Improvements

• How to cut?
• MeTiS graph partitioning package: obtain a balanced minimal vertex 

separator of the mesh graph.

• How to map the planar parameterizations onto the sphere?
• Moebius inversion 𝑓(𝑧) = 1/𝑐𝑜𝑛𝑗(𝑧)

• This maps the interior of the unit disk to its exterior.

• Mapped to the unit sphere using the inverse stereo projection.



More papers

• Connectivity Shapes

• Spherical Parameterization Balancing Angle and Area Distortions, 
TVCG 2017



Outlines

• Definition & Applications

• Hierarchical method
• Paper: Advanced Hierarchical Spherical Parameterizations

• Two hemispheres

• Curvature flow



Calabi flow

• Calabi energy: it is squared difference between current curvature 
vector and target curvature.



Mean curvature flow



Surface Mapping
Xiao-Ming Fu
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Surface Mapping
Inter-surface mapping, Cross parameterization

• A one-to-one mapping 𝑓 between the two surfaces 𝑀𝑠 and 𝑀𝑡

𝑀𝑠 𝑀𝑡



Compatible meshes

• Meshes with identical connectivity

𝑀𝑠 𝑀𝑡  𝑀𝑡 = 𝑓(𝑀𝑠) ≈ 𝑀𝑡



Applications

• Morphing

• Attribute transfer

• ……



Applications

• Morphing

• Attribute transfer

• ……







Inputs

• Two (𝑛) models and some corresponding landmarks



Goal

• Bijection and low distortion



Outlines

• Definition

• Application

• Algorithms
• Common base domain

• Cross-Parameterization and Compatible Remeshing of 3D Models

• Parameterization-based method

• ……



Algorithm stages

• Construct a common base domain
• Topologically identical triangular layouts of the two meshes.

• Compute a low distortion cross-parameterization
• Each patch is mapped to the corresponding base mesh triangle.

• Compatibly remeshes the input models using the parameterization



Common base domain
Topologically identical triangular layouts

• Incrementally adding pairs of matching edge paths between feature 
vertices.

Edge paths

Face paths

Base meshes

a pair of paths with the
smallest length sum



Cross-Parameterization

• Tutte’s embedding:
Given a triangulated surface homeomorphic to a disk, if the (𝑢, 𝑣) coordinates 
at the boundary vertices lie on a convex polygon in order, and if the coordinates 
of the internal vertices are a convex combination of their neighbors, then the 
(𝑢, 𝑣) coordinates form a valid parameterization (without self-intersections, 
bijective).

• Each patch is a triangle, i.e., it is a convex boundary.
• Bijection guarantee. 



Cross-Parameterization

• 𝑓 = 𝑓𝑡
−1 ∘ 𝑓𝑠𝑡 ∘ 𝑓𝑠

𝑀𝑠 𝑀𝑡

𝑓𝑠 𝑓𝑡

𝑓𝑠𝑡



Compatible Remeshing

• First remeshes the target model with the connectivity of the source mesh

• Perform smoothing and refinement

High  approximation error 

(b) Initial projection
(c) After smoothing
(d) Smoothing and refinement



Disadvantages

• The construction of common base domain is non-trivial.

• The distortion of surface mappings is not optimized directly.



Efficient Optimization of Common Base 
Domains for Cross Parameterization 2012

• Initial Base Domain Construction (previous method)

• Boundary Stretching
• curve stretching operator is to convert a curve into a geodesic curve locally

• Boundary Swapping
• Similar to edge flip

• Patch Merging
• helps reduce the distortion





Outlines

• Definition

• Application

• Algorithms
• Common base domain

• Parameterization-based method

• ……



Algorithm steps

• (a) Cutting to disk topology.

• (b) Computing the joint flatteningsΦ, Ψ.

• (c) Bijection Lifting.



Cutting paths

• Bijective correspondence
• Shortest path

• Minimal spanning tree



Computing Φ, Ψ

• Constraint
• Common boundary condition

• Locally injective

• Solvers:
• Former methods



Bijection Lifting

• Bijective parameterizations



Bijection Lifting

• Only locally injective constrains

Ambiguity



Bijection Lifting

• Only locally injective constrains

Ambiguity





Disadvantages

• Cut-dependent



Seamless Surface Mappings
SIGGRAPH 2015



Cut-independent



More methods

• Inter-Surface Mapping, 2004

• Functional Maps: A Flexible Representation of Maps Between Shapes, 
2012

• Hyperbolic Orbifold Tutte Embeddings, 2016

• Variance-Minimizing Transport Plans for Inter-surface Mapping, 2017

• ……



Morphing
Xiao-Ming Fu
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• Example-Driven Deformations Based on Discrete Shells

• Affine transformation
• As-Rigid-As-Possible Shape Interpolation

• Data-driven morphing
• A Data-Driven Approach to Realistic Shape Morphing

• Data-Driven Shape Interpolation and Morphing Editing
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Definition

• Morphing is a special effect in motion pictures and animations that 
changes (or morphs) one image or shape into another through a 
seamless transition.



Definition

• Problem: Given 𝑀0, 𝑀1, and 𝑡, how to compute the shape 𝑀𝑡?

• 𝑡 ∈ [0,1], interpolation

• 𝑡 ∉ [0,1], extrapolation

𝑀0

Source
𝑀1

Target

𝑀𝑡





Requirements

• Look naturally and intuitively

• Symmetry

• Smooth vertex paths

• Bounded distortion / low distortion

• Foldover-free

• Large deformation

• ……



Some methods

• First interpolate some values/metrics, then reconstruct the shape.

• Angle, length, area, volume, and curvature
• Example-Driven Deformations Based on Discrete Shells

• Affine transformation
• As-Rigid-As-Possible Shape Interpolation

• Data-driven morphing
• A Data-Driven Approach to Realistic Shape Morphing

• Data-Driven Shape Interpolation and Morphing Editing
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• Affine transformation
• As-Rigid-As-Possible Shape Interpolation

• Data-driven morphing
• A Data-Driven Approach to Realistic Shape Morphing

• Data-Driven Shape Interpolation and Morphing Editing
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Interpolation

Angle, length, and volume
𝑙𝑒
𝑡 = 1 − 𝑡 𝑙𝑒

0 + 𝑡𝑙𝑒
1

𝜃𝑒
𝑡 = 1 − 𝑡 𝜃𝑒

0 + 𝑡𝜃𝑒
1

V𝑡 = 1 − 𝑡 𝑉0 + 𝑡𝑉1

𝑙𝑒: edge length

𝜃𝑒: dihedral angles 

𝑉: volume

𝑉 =
1

6
 

𝑓𝑖,𝑗,𝑘

(𝒙𝑖 × 𝒙𝑗) ∙ 𝒙𝑘



Reconstruction 

• A mesh with prescribed edge lengths and dihedral angles does not 
exist.

𝐸𝑙 =
1

2
 

𝑒

𝑙𝑒 − 𝑙𝑒
𝑡 2

𝐸𝑎 =
1

2
 

𝑒

𝜃𝑒 − 𝜃𝑒
𝑡 2

𝐸𝑣 =
1

2
𝑉 − 𝑉𝑒

𝑡 2

𝐸 = 𝜆𝐸𝑙 + 𝜇𝐸𝑏 + 𝜈𝐸𝑣
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Interpolation

• How to define 𝐴(𝑡) reasonably?

• Simplest solution:
𝐴 𝑡 = 1 − 𝑡 𝐼 + 𝑡𝐴

• More elaborate approaches:
• Singular value decomposition

𝐴 = 𝑈ΣVT

𝐴 𝑡 = 𝑈 𝑡 1 − 𝑡 𝐼 + 𝑡Σ 𝑉𝑇(𝑡)

• Polar decomposition
𝐴 = 𝑈ΣVT = 𝑈𝑉𝑇𝑉Σ𝑉𝑇 = 𝑅𝑆
𝐴 𝑡 = 𝑅 𝑡 1 − 𝑡 𝐼 + 𝑡S



𝐴 𝑡 = 1 − 𝑡 𝐼 + 𝑡𝐴

𝐴 𝑡 = 𝑈 𝑡 1 − 𝑡 𝐼 + 𝑡Σ 𝑉𝑇(𝑡) with subtracting 2𝜋

𝐴 𝑡 = 𝑅 𝑡 1 − 𝑡 𝐼 + 𝑡S

𝐴 𝑡 = 𝑈 𝑡 1 − 𝑡 𝐼 + 𝑡Σ 𝑉𝑇(𝑡)



Reconstruction

• Least squares:

𝐸 =  

𝑓

𝐽 − 𝐴 𝑡 𝐹
2
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Data-driven approach

• Problem:
• Input: a database with various models belonging to the same category and 

containing identical connectivity

• Given source and target models, how to utilize the database to generate the 
morphing?



Two stages

• Offline stage
• Analyze the model database to form local shape spaces that better 

characterize the plausible distribution of models in the category.

• Online stage
• When the source and target models are given, we find reference models in 

the local shape spaces and use them to guide the as-rigid-as-possible shape 
morphing.



More details

• Offline stage
• Define distance between pairs of models

• Online stage
• Find a minimal distance path connecting the source and target models

• In-between reference models, do as-rigid-as-possible shape interpolation.



Distance Measure

 𝑑 𝑀𝑖 , 𝑀𝑗 =
 𝑘=1

𝑛 𝑣𝑘
𝑖 − 𝑣𝑘

𝑗 2

𝑛
𝑣𝑘

𝑖 : the 𝑘𝑡ℎ vertex of the 𝑖𝑡ℎ model (𝑀𝑖).

𝑛: the vertex number of the model

Pre-alignment: align models in a database using rigid transforms with 
the known correspondences.



Morphing

• Path Optimization
• Shortest path (see more complex algorithm in the paper)

• Interpolation

𝐸 =  

𝑘=1

𝑁𝑅

𝑤𝑘(𝑡)𝐸𝑘

𝐸𝑘 =  

𝑖=1

𝑛

 

𝑗∈Ω(𝑖)

𝑤𝑖𝑗 (  𝑣𝑖 − 𝑣
𝑗
) − 𝑅𝑘

𝑖 (𝑣𝑘
𝑖 − 𝑣𝑘

𝑗
)

2
+ 𝛾  𝑣𝑖 − 𝑣𝑘

𝑖 2

𝑤𝑘(𝑡): exp(−𝜀|𝑡 − 𝑡𝑘|) where 𝑡𝑘 =
𝑘−1

𝑁𝑅−1

Solver: Local/global

The number of models on the generated path.



Point set registration
Xiao-Ming Fu



Point set registration

• The process of finding a spatial transformation that aligns two point 
sets.



• The purpose of finding such a transformation includes merging 
multiple data sets into a globally consistent model, and mapping a 
new measurement to a known data set to identify features or to 
estimate its pose. 



Problem

• Input: two finite size point sets {𝑃, 𝑄}, which contain 𝑀 and 𝑁 points.

• Output: a transformation to be applied to the moving “model” point 
set 𝑃 such that the difference between 𝑃 and the static “scene” set 𝑄
is minimized. 

• The mapping may consist of a rigid or non-rigid transformation.
• Rigid registration: translation and rotation

• Non-rigid registration: affine transformations or any nonlinear transformation

For example: Spline



Challenges 

• No correspondences.

• Noisy point cloud.



Iterative closest point (ICP)
https://en.wikipedia.org/wiki/Iterative_closest_point

• 1. ∀𝑝𝑖 ∈ 𝑃, match the closest point 
in 𝑄, denoted as 𝑞𝑖

• 2. Estimate the rigid transformation 
that aligns the corresponding points 
as much as possible.

• 3. Iterate above two steps.

𝑝𝑖

𝑞𝑖



Estimation of rigid transformation

• Error: 

𝐸 𝑃, 𝑄 =  

(𝑝𝑖,𝑞𝑖)

𝑝𝑖 − 𝑞𝑖 2
2

Compute rotation 𝑅 and translation 𝑡:

𝐸 𝑃, 𝑄 =  

(𝑝𝑖,𝑞𝑖)

𝑅𝑝𝑖 + 𝑡 − 𝑞𝑖 2
2



Analytical solution

• Define 𝜇𝑝 =
1

𝑛
 𝑖=1

𝑛 𝑝𝑖, 𝜇𝑞 =
1

𝑛
 𝑖=1

𝑛 𝑞𝑖

𝐸 𝑃, 𝑄 =  

𝑖=1

𝑛

𝑅𝑝𝑖 + 𝑡 − 𝑞𝑖
2

=  

𝑖=1

𝑛

𝑅𝑝𝑖 + 𝑡 − 𝑞𝑖 + 𝑅𝜇𝑝 − 𝜇𝑞 − 𝑅𝜇𝑝 + 𝜇𝑞
2

=  

𝑖=1

𝑛

𝑅 𝑝𝑖 − 𝜇𝑝 − (𝑞𝑖 − 𝜇𝑞) + 𝑡 + 𝑅𝜇𝑝 − 𝜇𝑞
2



Analytical solution

𝐸 𝑃, 𝑄

=  

𝑖=1

𝑛

𝑅 𝑝𝑖 − 𝜇𝑝 − (𝑞𝑖 − 𝜇𝑞)
2

+ 𝑡 + 𝑅𝜇𝑝 − 𝜇𝑞
2

+ 2 𝑡 + 𝑅𝜇𝑝 − 𝜇𝑞
𝑇

𝑅 𝑝𝑖 − 𝜇𝑝 − (𝑞𝑖 − 𝜇𝑞)

Since: 

 

𝑖=1

𝑛

2 𝑡 + 𝑅𝜇𝑝 − 𝜇𝑞
𝑇

𝑅 𝑝𝑖 − 𝜇𝑝 − (𝑞𝑖 − 𝜇𝑞)

= 2 𝑡 + 𝑅𝜇𝑝 − 𝜇𝑞
𝑇
 

𝑖=1

𝑛

𝑅 𝑝𝑖 − 𝜇𝑝 − (𝑞𝑖 − 𝜇𝑞)

= 2 𝑡 + 𝑅𝜇𝑝 − 𝜇𝑞
𝑇

 

𝑖=1

𝑛

𝑅 𝑝𝑖 − 𝜇𝑝 −  

𝑖=1

𝑛

(𝑞𝑖 − 𝜇𝑞) = 0



Analytical solution

𝐸 𝑃, 𝑄 =  

𝑖=1

𝑛

𝑅 𝑝𝑖 − 𝜇𝑝 − (𝑞𝑖 − 𝜇𝑞)
2

+ 𝑡 + 𝑅𝜇𝑝 − 𝜇𝑞
2

No matter what 𝑅 is got, set 𝑡 = −𝑅𝜇𝑝 + 𝜇𝑞.

Thus, 

𝐸 𝑃, 𝑄 =  

𝑖=1

𝑛

𝑅 𝑝𝑖 − 𝜇𝑝 − (𝑞𝑖 − 𝜇𝑞)
2

=  

𝑖=1

𝑛

𝑝𝑖 − 𝜇𝑝
𝑇
𝑅𝑇𝑅 𝑝𝑖 − 𝜇𝑝 + (𝑞𝑖 − 𝜇𝑞)

2
− 2 𝑞𝑖 − 𝜇𝑞

𝑇
𝑅 𝑝𝑖 − 𝜇𝑝

=  

𝑖=1

𝑛

𝑝𝑖 − 𝜇𝑝
𝑇

𝑝𝑖 − 𝜇𝑝 + 𝑞𝑖 − 𝜇𝑞
2

− 2 𝑞𝑖 − 𝜇𝑞
𝑇
𝑅 𝑝𝑖 − 𝜇𝑝



Analytical solution

argmin
𝑅

𝐸 𝑃, 𝑄

= argmin
𝑅

 

𝑖=1

𝑛

𝑝𝑖 − 𝜇𝑝
𝑇

𝑝𝑖 − 𝜇𝑝 + (𝑞𝑖 − 𝜇𝑞)
2

− 2 𝑞𝑖 − 𝜇𝑞
𝑇
𝑅 𝑝𝑖



Analytical solution

• If 𝑀 is a positive-symmetric-definite matrix then for any orthogonal 𝑅 , 
𝑡𝑟(𝑀) > 𝑡𝑟(𝑅𝑀).

• Proof: Set 𝑀 = 𝐴𝐴𝑇

𝑡𝑟 𝑅𝑀 = 𝑡𝑟 𝑅𝐴𝐴𝑇 = 𝑡𝑟 𝐴𝑇𝑅𝐴 =  𝑎𝑖
𝑇(𝑅𝑎𝑖)

Schwarz inequality: 𝑎𝑖
𝑇 𝑅𝑎𝑖 ≤ 𝑎𝑖

𝑇𝑎𝑖 𝑎𝑖𝑅
𝑇𝑅𝑎𝑖 = 𝑎𝑖

𝑇𝑎𝑖 = 𝑡𝑟(𝑀)



Analytical solution

• Denote H =  𝑖=1
𝑛 𝑝𝑖 − 𝜇𝑝 𝑞𝑖 − 𝜇𝑞

𝑇
= 𝑈Σ𝑉𝑇.

Solve argmax
𝑅

𝑡𝑟 2𝑅𝐻 .

Set 𝑋 = 𝑉𝑈𝑇,

Then, 𝑋𝐻 = 𝑉Σ𝑉𝑇

For any orthonormal matrix 𝐵,
𝑡𝑟 𝑋𝐻 ≥ 𝑡𝑟(𝐵𝑋𝐻)

Thus, 
𝑉𝑈𝑇 = 𝑋 = argmax

𝑅
𝑡𝑟 2𝑅𝐻



Atlas generation

Xiao-Ming Fu



Outlines

• Definition

• Mesh cutting

• Chart parameterization
• Bijective, low distortion

• Chart packing



Outlines

• Definition
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• Chart packing



Texture Mapping

• Texture mapping is a method for defining high frequency detail, 
surface texture, or color information on a computer-generated 
graphic or 3D model.





Atlas

• Requires defining a mapping from the model space to the texture space.



Generation process

Mesh Cutting Parameterizations Packing



Mesh Cutting

• Low distortion

• As short as possible length



Seams introduce filtering artifacts



Parameterizations

• Bijective 

• Low isometric distortion



Packing

• High packing efficiency



Packing

• High packing efficiency



Applications

• Signal storage

• Geometric processing

Gradient-Domain Processing
within a Texture Atlas



Outlines

• Definition

• Mesh cutting

• Chart parameterization
• Bijective, low distortion

• Chart packing



Mesh cutting

• Points → Paths

• Segmentation



Distortion points
Geometry Images, SIGGRAPH 2002

• Iterative method
• Parameterize the mesh to the plane.

• Add the point of greatest isometric distortion.



More methods

• Spanning tree seams for reducing parameterization distortion of 
triangulated surfaces, 2002

• Sphere-based cut construction for planar parameterizations, 2018



Segmentation
D-Charts: Quasi-Developable Mesh Segmentation, EG 2015

• Goal: mesh segmentation into compact charts that unfold with 
minimal distortion



Proxy

• Devlopable surfaces of constant slope

• Constant angle between surface normal and axis

• Proxy: < 𝑎𝑥𝑖𝑠, 𝑎𝑛𝑔𝑙𝑒 >, < 𝑁𝑐 , 𝜃𝑐 >



Fitting error

• Measures how well triangle fits a chart
𝐹 𝐶, 𝑡 = 𝑁𝑐 ⋅ 𝑛𝑡 − 𝑐𝑜𝑠𝜃𝑐

2

• Combine with compactness

𝐶 𝐶, 𝑡 =
𝜋𝐷 𝑆𝑐 , 𝑡

2

𝐴𝑐
𝑆𝑐 is the seed triangle of the given chart

𝐷(𝑆𝑐 , 𝑡) is the length of the shortest path (inside the chart) between the two triangles

 𝐴𝑐 is the area of chart 𝐶

• Cost function
𝐶𝑜𝑠𝑡 𝐶, 𝑡 = 𝐴𝑡𝐹 𝐶, 𝑡

𝛼𝐶 𝐶, 𝑡 𝛽



Segmentation method

• Lloyd algorithm
• 1. Select random triangles to act as seeds

• 2. Grow charts around seeds using a greedy approach

• 3. Find new proxy for each chart

• 4. Repeat from step 2 until convergence

• K-means

• CVT



Algorithm overview



Bounded Lloyd iterations

• Initialization
• Random / Furthest point seeds

• Compute initial proxy

• Bounded Growing/Reseeding iterations

• Termination



Bounded Lloyd iterations – Growing

• Use greedy approach
• Prioritize by 𝐶𝑜𝑠𝑡 𝐶, 𝑡

• Bound Fitting Error
• Guarantee (nearly) developable charts

• 𝐹 𝐶, 𝑡 < 𝐹𝑚𝑎𝑥



Bound Lloyd iterations – Reseeding

• Find new proxy

min
𝑁𝑐,𝜃𝑐

1

𝐴𝑐
 𝑡∈𝐶 𝐴𝑡𝐹(𝐶, 𝑡) 𝑠. 𝑡. 𝑁𝑐 = 1

• Find new seed
• Minimal Fitting Error

• Close to center of chart

• To find such seeds, we examine the first 𝑘 triangles in the chart with minimal 
fitting error (𝑘 = 10 in all our examples), and then select the one closest to 
the center of the chart.



Algorithm overview



Hole filling

• Bound on Fitting Error 
• Unclassified triangles

• Fill holes
• Large holes → New proxy

• Small holes → Grow neighbors



Algorithm overview



Merging

• Broaden set of captured developable surfaces

• Reduce number of charts



Algorithm overview



Post processing

• Straighten boundaries

• Darts/Gussets relax stress
• Add seams toward high error regions

• Verify disc topology

• Parameterization 



Outlines

• Definition

• Mesh cutting

• Chart parameterization
• Bijective, low distortion

• Chart packing



Bijection

• Preserving orientations

• No intersections of boundary



Barrier
Bijective Parameterization with Free Boundaries, SIGGRAPH 2015

• For each boundary edge with vertices U1, U2, we associate a barrier 
function: 

max 0,
𝜀

𝑑𝑖𝑠𝑡(𝑈1, 𝑈2, 𝑈𝑖)
− 1

2

where, 𝑑𝑖𝑠𝑡(𝑈1, 𝑈2, 𝑈𝑖)measures the distance from a boundary point 
𝑈𝑖≠1,2 to the edge (𝑈1, 𝑈2).



Scaffold
Simplicial Complex Augmentation Framework for Bijective Maps, SIGGRAPH Asia 2017



Outlines

• Definition

• Mesh cutting

• Chart parameterization
• Bijective, low distortion

• Chart packing



Atlas Refinement with 
Bounded Packing Efficiency
Hao-Yu Liu, Xiao-Ming Fu, Chunyang Ye, Shuangming Chai, Ligang Liu

ACM Transactions on Graphics (SIGGRAPH) 38(4), 2019.



Packing Efficiency (PE)

PE=86.1%

PE=86.1%
High pixel usage rate

PE=45.6%
Low pixel usage rate



Packing Efficiency (PE)

Maximizing atlas packing efficiency is NP-hard! 
[Garey and Johnson 1979; Milenkovic 1999]



Other Requirements

• Low distortion

High Distortion Low Distortion



Other Requirements

• Low distortion
• [Golla et al. 2018; Liu et al. 2018; Shtengel et al. 2017; Zhu et al. 2018]

• Consistent orientation 
• [Floater 2003; Tutte 1963; Claici et al. 2017; Hormann and Greiner 2000; 

Rabinovich et al. 2017; Schüller et al. 2013]

• Overlap free
• [Jiang et al. 2017; Smith and Schaefer 2015]

• Low boundary length
• [Li et al. 2018; Poranne et al. 2017; Sorkine et al. 2002]

These methods do not consider PE!



Atlas Refinement

No overlap
High PE

Input



Previous Work

Box Cutter [Limper et al. 2018]

No guarantee for a high PE result!



Motivation



Packing Problems 

Irregular shapes
Hard to achieve high PE

Rectangles
Simple to achieve high PE
Widely used in practice

?



Axis-Aligned Structure

Axis-aligned structure Rectangle decomposition High PE (87.6%)!



General Cases

Not axis-aligned Axis-aligned
Higher distortion

Axis-aligned deformation 



Distortion Reduction

Axis-aligned
High distortion

No overlap & High PE
High distortion

No overlap & High PE
Low distortion

Bounded PE

Scaffold-based method
[Jiang et al. 2017]

Distortion reduction



Axis-aligned deformation 

Distortion reduction

Rectangle 
decomposition 

and packingPipeline



Axis-Aligned Deformation

• Input

Single chart
With overlap

10 charts
Without overlap



Axis-Aligned Deformation

Direction vector
Ambiguous rotating directions

Fail!



Axis-Aligned Deformation

Polar angle
Clear rotating direction

Success!



Axis-Aligned Deformation

Input Target polar angle



Axis-Aligned Deformation

• Energy of boundary alignment

𝐸edge 𝐛𝑖 =
1

2
(1 − 𝛾) 𝜃𝑖 −

𝜋

2
𝛩𝑖
2

+
1

2
𝛾
𝑙𝑖

𝑙𝑖
0 − 1

2

𝐸align(𝐜) = 

𝑖=1

𝑁𝑏

𝑙𝑖
0

𝑙0
𝐸edge 𝐛𝑖

Rotate polar angle Keep length



Axis-Aligned Deformation

• Energy of isometric distortion(symmetric Dirichlet)

Keep low distortion and orientation consistency.

𝐸d(c) =
1

4
 

fi∈Fc

Area f𝑖
Area Mc

‖𝐽𝑖‖𝐹
2 + ‖𝐽𝑖
−1‖𝐹
2



Axis-Aligned Deformation
0.2X  Playback

min
c
𝐸d(c) + 𝜆𝐸align(c)

s.t. det 𝐽𝑖 > 0, ∀𝑖



Rectangle Decomposition and Packing

The faces are all rectangles.
But the number is too many.



Rectangle Decomposition and Packing

• Motorcycle graph algorithm

PE

Score

87.0%

0.688

83.6%

0.659

84.4%

0.658

Score = PE−𝜔BL1/BL0



min
C
𝐸reduction = 𝐸d(C) + 𝐸PE(C)

Distortion Reduction

Scaffold-based method
[Jiang et al. 2017]

Isometric
energy

Barrier function 
of PE bound

s.t. 𝛷 is bijective



Distortion reduction



Benchmark (5,588)

PE=86.2% PE=86.7%



Benchmark (5,588)

PE=90.5%

PE=91.0%





PolyCube

Xiao-Ming Fu
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PolyCube

Tetrahedral Mesh PolyCube

PolyCube:
1. Compact representations for closed 
complex shapes
2. Boundary normal aligns to the axes.
3. Axes: ±1,0,0 𝑇 , 0,±1,0 𝑇 , 0,0, ±1 𝑇 .

PolyCube-Map 𝑓:
1. A mesh-based map.
2. Foldover-free and low distortion.

𝑓𝑓



Application – All-hex meshing
Tetrahedral Mesh PolyCube All-Hex Mesh

Applications based on PolyCube:
1. All-Hex Mesh generation.
2. Texture Mapping [Tarini et al. 
2004].
3. GPU-based subdivision [Xia et 
al. 2011].
……



Application – Seamless texture mapping

Applications based on PolyCube:
1. All-Hex Mesh generation.
2. Texture Mapping [Tarini et al. 
2004].
3. GPU-based subdivision [Xia et 
al. 2011].
……



PolyCube facet, edge, and vertex

PolyCube facet: 
share the same label

PolyCube edge: 
The edges between facets

PolyCube vertex: 
sharing by at least three charts



Sufficient topological conditions

• Any PolyCube facet should 
have at least four neighboring 
Poly-Cube facets.

• Any two neighboring 
PolyCube facets should not 
have opposite labels such as 
+ 𝑋 and −𝑋.

• The valence of each PolyCube
vertex is three.



Outlines

• Definition

• Deformation-based method
• All-Hex Mesh Generation via Volumetric PolyCube Deformation

• Voxel-based method
• Optimizing PolyCube domain construction for hexahedral remeshing

• Cluster-based method
• PolyCut: Monotone Graph-Cuts for PolyCube Base-Complex Construction

• Generalized PolyCube



Pipeline



Rotation-driven deformation

• Goal: gradually aligns the model’s surface normals with one of the six 
global axes, preserving shape as much as possible.



Rotation-driven deformation

• As-Rigid-As-Possible deformation
• No local step

• Rotations are determined by axis-alignment constraints.

• Steps:
• For every surface vertex (except those on sharp features), the minimal 

rotation necessary to align each surface vertex normal with one of 
± 𝑋,±𝑌,±𝑍. 
• quaternion

• Smoothly propagate to feature and interior vertices.
• Laplace equation per quaternion component

• Solve 𝐸.
• Least squares.

𝐸 = 

𝑖=1

𝑁𝑣

𝑤𝑖  

𝑗∈Ω(𝑖)

𝑤𝑖𝑗 𝑝𝑖
′ − 𝑝𝑗

′ − 𝑅𝑖 𝑝𝑖 − 𝑝𝑗
2



Labeling

• 1. Label surface triangles according to the closest 
axis

• 2. Group similarly labeled triangles into charts.

• 3. Straighten chart boundaries.

• 4. remove small, spurious charts bounded by at 
most two edges



Multi-orientation chart

Opposite sides

A new chart



Highly non-planar chart

Detect extrema along 
the chart boundary

Valid cuts are defined as 
those that would not 
introduce new charts with 
three or fewer neighbors.

Three possible
axis-aligned cut options.



Position-driven deformation

• constrain each chart to an axis-
aligned plane.
• the chart coordinate

𝐸 = 

𝑖=1

𝑁𝑣

𝑤𝑖  

𝑗∈Ω(𝑖)

𝑤𝑖𝑗 𝑝𝑖
′ − 𝑝𝑗

′ − 𝑅𝑖 𝑝𝑖 − 𝑝𝑗
2



More papers:

• 𝐿1 -based Construction of Polycube Maps from Complex Shapes (2014)

• Efficient Volumetric PolyCube-Map Construction (2016)



Outlines
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• Deformation-based method
• All-Hex Mesh Generation via Volumetric PolyCube Deformation

• Voxel-based method
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• Generalized PolyCube



Pipeline

1. Pre-deformation
2. PolyCube construction 
and optimization

3. Mapping computation



Wedge regions 

Wedge regions are hard to avoid



Voxelization

Length of cube



Optimization

Domain simplicity 𝐸𝑐 + 𝛼 Geometric deviation 𝐸𝑔
Morphological operations



PolyCube volumetric parameterization

Projection Fixed boundary mapping



More papers based on construction

• Computing Surface PolyCube-Maps by Constrained Voxelization (PG 
2019)



Algorithm workflow

I. Constrained voxelization II. Computing surface PolyCube-Map

PolyCube-map 𝑓Segmentation 𝑆
Optimized 

quad mesh 𝑄
Constructed 

PolyCube 𝐶
Pre-axis-aligned 

shape 𝐴

Input:

A source mesh & 

a pre-axis-aligned shape

Output: 

PolyCube-map



Constrained voxelization: Formulation

The number of corners of the PolyCube

The error-bounded constraint

The topological constraint



Filling operator

Two operators

Erasing operator

Performing one filling operator:

An erasing operator performed on 

the dual domain

Performing one erasing operator:

1. Partition the voxels domain into disjoint cuboids

2. Compute the corner number changes

3. Remove the cuboid that causes the most changes



Erasing-and-filling Strategy

1. Generate the initialization, k = 1

2. Perform one erasing operator 

without violating the constraints

3. Perform one filling operator 

without violating the constraints

4. k = k + 1, go to step 2



Erasing-and-filling Strategy

𝑁(𝐶) = 72 𝑁(𝐶) = 72 𝑁(𝐶) = 72

Our developed erasing and filling operators are effective and robust

Order I Order II Order III



Algorithm workflow

I. Constrained voxelization II. Computing surface PolyCube-Map

PolyCube-map 𝑓Segmentation 𝑆
Optimized 

quad mesh 𝑄
Constructed 

PolyCube 𝐶
Pre-axis-aligned 

shape 𝐴

Input: 

A source mesh & 

a pre-axis-aligned shape

Output: 

PolyCube-map



PolyCube-Maps computation

2. Segment the triangular surface into a set of submeshes

3. Map each submesh onto one PolyCube chart

1. Optimize a new quad mesh



Quad mesh optimization

Requirements

Wire mesh design [Garg et al. 2014]

Anderson acceleration [Peng et al. 2018]

1. Preserve the given shape with the same connectivity of the Polycube

2. All edge lengths are equal to a constant

3. All interior angles are in an interval [
𝜋

2
− 𝜃,
𝜋

2
+ 𝜃]

4. Almost no flipped quads



Segmentation and map computation

PolyCube Quad mesh Triangular surface

Same connectivity Shape preserving

Decompose Decompose

submesh submeshchart

2D fixed-boundary mapping 

[Fu et al. 2016] 

AMIPS method [Fu et al. 2015]



Outlines

• Definition

• Deformation-based method
• All-Hex Mesh Generation via Volumetric PolyCube Deformation

• Voxel-based method
• Optimizing PolyCube domain construction for hexahedral remeshing

• Cluster-based method
• PolyCut: Monotone Graph-Cuts for PolyCube Base-Complex Construction

• Generalized PolyCube



Pipeline
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Definitions – Thinking from topology



More examples



Difference

• Conventional PolyCube:
• A shape composes of axis-aligned unit cubes that abut with each other.

• Unit cubes as the building block.

• All cubes are glued together and embedded in the 3D space.

• Generalized PolyCube:
• A shape composes of a set of cuboids glued together topologically.

• Topological simplicity and elegance.



Paper: All-Hex Meshing using Closed-Form 
Induced Polycube

Cut faces Frame field Deformed 
cut mesh

PolyCube



Rotation
https://en.wikipedia.org/wiki/Rotation

• A rotation is a circular movement of an object around a center (or 
point) of rotation. 

• A three-dimensional object can always be rotated around an infinite 
number of imaginary lines called rotation axes.

• A rotation is a rigid body movement.



2D rotation

• 𝑅 =
𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃
−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

𝜃



Complex view

• 𝑧′ = 𝑒𝑖𝜃𝑧

• 𝑧′ has the same length as 𝑧.

• 𝑧′ is rotated by 𝜃 degrees.

𝜃



Euler angles

• The Euler angles are three angles introduced by 
Leonhard Euler to describe the orientation of a 
rigid body with respect to a fixed coordinate 
system.

• Any orientation can be achieved by composing 
three elemental rotations, i.e. rotations about the 
axes of a coordinate system. Euler angles can be 
defined by three of these rotations. 



Quaternion
https://en.wikipedia.org/wiki/Quaternion

• Form: 𝑞 = 𝑎 + 𝑏𝒊 + 𝑐𝒋 + 𝑑𝒌
• 𝑎, 𝑏, 𝑐, 𝑑 are real numbers

• 𝒊, 𝒋, 𝒌 are the fundamental quaternion units

• 𝒊2 = 𝒋2 = 𝒌2 = 𝒊𝒋𝒌 = −1

• Componentwise addition
• 𝑎1 + 𝑏1𝒊 + 𝑐1𝒋 + 𝑑1𝒌 + 𝑎2 + 𝑏2𝒊 + 𝑐2𝒋 + 𝑑2𝒌 = 𝑎1 + 𝑎2 + (𝑏1 +



Quaternion

• 𝒊𝒋 = 𝒌, 𝒋𝒊 = −𝒌; 𝒋𝒌 = 𝒊, 𝒌𝒋 = −𝒊; 𝒌𝒊 = 𝒋, 𝒊𝒌 = −𝒋.

• Multiplication (Hamilton product)
𝑎1 + 𝑏1𝒊 + 𝑐1𝒋 + 𝑑1𝒌 𝑎2 + 𝑏2𝒊 + 𝑐2𝒋 + 𝑑2𝒌
= 𝑎1 𝑎2 + 𝑏2𝒊 + 𝑐2𝒋 + 𝑑2𝒌 + 𝑏1𝒊 𝑎2 + 𝑏2𝒊 + 𝑐2𝒋 + 𝑑2𝒌
+ 𝑐1𝒋 𝑎2 + 𝑏2𝒊 + 𝑐2𝒋 + 𝑑2𝒌 + 𝑑1𝒌 𝑎2 + 𝑏2𝒊 + 𝑐2𝒋 + 𝑑2𝒌
= 𝑎1𝑎2 − 𝑏1𝑏2 − 𝑐1𝑐2 − 𝑑1𝑑2 + 𝑎1𝑏2 + 𝑏1𝑎2 + 𝑐1𝑑2 − 𝑑1𝑐2 𝒊
+ 𝑎1𝑐2 − 𝑏1𝑑2 + 𝑐1𝑎2 + 𝑑1𝑏2 𝒋 + (𝑎1𝑑2 + 𝑏1𝑐2 − 𝑐1𝑏2 + 𝑑1𝑎2)𝒌

noncommutative



Conjugation, the norm, and reciprocal

• Conjugation:
• 𝑞∗ = 𝑎 − 𝑏𝒊 − 𝑐𝒋 − 𝑑𝒌

• Norm:

• 𝑞 = 𝑞𝑞∗ = 𝑎2 + 𝑏2 + 𝑐2 + 𝑑2

• Reciprocal:

• 𝑞−1 =
𝑞∗

𝑞 𝟐



Unit quaternion

• Because the vector part of a quaternion is a vector in 𝑅3, the geometry of 
𝑅3 is reflected in the algebraic structure of the quaternions.

• A single rotation by a given angle 𝜃 about a fixed axis 𝑢 = 𝑥𝒊 + 𝑦𝒋 + 𝑧𝒌

• An extension of Euler's formula:

• 𝑞 = 𝑒
𝜃

2
(𝑥𝒊+𝑦𝒋+𝑧𝒌) = cos

𝜃

2
+ 𝑥𝒊 + 𝑦𝒋 + 𝑧𝒌 sin

𝜃

2

• The desired rotation can be applied to an ordinary vector 𝑝 = 𝑝𝑥𝒊 +
𝑝𝑦𝒋 + 𝑝𝑧𝒌
• 𝑝′ = 𝑞𝑝𝑞−1

• 𝑞−1 = 𝑞∗ = cos
𝜃

2
− 𝑥𝒊 + 𝑦𝒋 + 𝑧𝒌 sin

𝜃

2



Unit quaternion ⟺ Rotation Matrix
𝑞 = 𝑤 + 𝑥𝒊 + 𝑦𝒋 + 𝑧𝒌⟺𝑀

• Unit quaternion ⟹ Rotation Matrix

𝑀 =

1 − 2𝑦2 − 2𝑧2 2𝑥𝑦 + 2𝑧𝑤 2𝑥𝑧 − 2𝑦𝑤

2𝑥𝑦 − 2𝑧𝑤 1 − 2𝑥2 − 2𝑧2 2𝑦𝑧 + 2𝑥𝑤

2𝑥𝑧 + 2𝑦𝑤 2𝑦𝑧 − 2𝑥𝑤 1 − 2𝑥2 − 2𝑦2

• Unit quaternion ⟸ Rotation Matrix

Suppose 𝑀 =

𝑚00 𝑚01 𝑚02
𝑚10 𝑚11 𝑚12
𝑚20 𝑚21 𝑚22

𝑚00 +𝑚11 +𝑚22 = 3 − 4 𝑥
2 + 𝑦2 + 𝑧2 = 3 − 4 1 − 𝑤2 = −1 +

4𝑤2 (ambiguity)

𝑚01 −𝑚10 = 4𝑧𝑤; 𝑚20 −𝑚02 = 4𝑦𝑤; 𝑚12 −𝑚21 = 4𝑥𝑤
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Definition

• Spatially-varying directional information, assigned to each 
point on a given domain.
• A field on a domain is the assignment of a directional to each point 

in the domain.

• Magnitude + direction

1. Direction
2. Length



Multi-valued field 

• Multiple directions per point with some notion of symmetry

• A set of directions or vectors at every point.
• Rotationally-symmetric direction fields (RoSy fields)

• 𝑁 = 1, 2, 4, 6

• Four directions with 𝜋/2 RoSy

• Two independent pairs of directions with 𝜋 RoSy within each pair.



• Vector fields

• Direction fields 

• Line fields

• Cross fields

• Frame fields

• RoSy fields

• N-symmetry fields

• PolyVector fields

• Tensor fields



Some concrete examples

• Principal directions of a shape

• Stress or strain tensors

• The gradient of a scalar field

• The advection field of a flow

• Diffusion data from MRI



Synthesis or design

• User constraints

• Alignment conditions

• Fairness objectives

• Physical realizations



Applications

• Mesh Generation



Applications

• All-hex meshing



Deformation

• Deformations which are as isometric as possible can be generated 
using approximate Killing vector fields.



Texture Mapping and Synthesis

• Seamless texture



Architectural Geometry

• Conjugate directions



Architectural Geometry

• Self-Supporting Structures
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Tangent Spaces

• The tangent spaces of the a triangle mesh can be located on the faces, 
edges, or vertices of a triangle mesh.

• One way to construct a tangent space at a point is to assign a surface 
normal vector to the point.
• Face: normal vector

• Vertex and edge: local average of the adjacent triangle normal vectors

• Local coordinate system
• Two orthogonal tangent vectors



Discrete Connections

• Given two adjacent tangent spaces 𝑖 and 𝑗, 
we need a notion of connection between 
them in order to compare two directional 
objects that are defined on them.

• A straightforward discretization of the Levi-
Civita connection is made by “flattening” the 
two adjacent tangent planes.

• 𝑋𝑖𝑗: angle difference between 
corresponding axes



Vector Field Topology – continuous

• A vector field has a singularity at a point 𝑝 if 
it vanishes or is not defined at this point. 

• 2D case:
• Parameterized curve: 𝑐: 0,1 → 𝑅2

• A smooth angle function: 𝛼: 0,1 → 𝑅
• Vector field: 

𝒗 𝑐 𝑡 = 𝒗 𝑐 𝑡
cos(𝛼(𝑡))
sin(𝛼(𝑡))

• Define the index (an integer) of the singularity 
at 𝑝:

index𝑝 =
1

2𝜋
(𝛼 1 − 𝛼(0))

Note: Since 𝛼 is smooth, the difference 𝛼(1) −
𝛼(0) is unique and it is a multiple of 2𝜋. 



Singularity

• The index measures the number of times the vectors along the curve 
𝑐 rotate counterclockwise, while traversing the curve once.

• It is common to consider only points 𝑝 with index index𝑝 ≠ 0 as 
singular. 
• It vanishes or is not defined at this point.

index𝑝 =
1

2𝜋
(𝛼 1 − 𝛼(0))

Singularity



Singularity

• The definition does not directly extend to surfaces, because there is 
no global coordinate system (the tangent bundle is not trivial).

• Calculate the index at a point 𝑝 of a vector field 𝑣 on a surface 𝑀 by 
using an arbitrary chart around 𝑝. 

• A chart for a topological space 𝑀 (also called a coordinate chart, 
coordinate patch, coordinate map, or local frame) is a 
homeomorphism from an open subset of 𝑀 to an open subset of a 
Euclidean space.



Singularity

• Poincaré–Hopf theorem: the sum of all the indices of a vector field 
equals 2 − 2𝑔 for a surface without boundary.

• For N-vector fields, the index is a multiple of 1/𝑁. Some examples:



Discrete Field Topology

• Piecewise constant face-based 1-
direction field
• Constant on face

• Discontinuous on edges

• Extension from continuous setting
• Define rotation between adjacent 

triangles to define angle difference
• It is intuitive to assume that the field 

undergoes a rotation 𝛿𝑖𝑗 =
𝜋

4
clockwise.

• 𝛿𝑖𝑗 =
𝜋

4
+ 2π𝑘 would be a valid assumption.



Rotation

• Principal rotation
• 𝛿𝑖𝑗 ∈ [−𝜋, 𝜋)

• Summarize all rotation angles on edges 
that are incident to the vertex

• index𝑝 =
1

2𝜋
 𝛿𝑖𝑗



Period Jumps

• Non-principal rotation:
• 𝛿𝑖𝑗 + 2π𝑘

• 𝑘 full period rotations 

• The values of 𝑘 are denoted as 
period jumps.

𝑘 = 0

𝑘 = 1



Matching - multi-valued field

• 𝑁 > 1 directionals per tangent space

• An additional degree of freedom:
• The correspondence between the 

individual directionals in tangent space 
𝑖 to those in the adjacent tangent 
space 𝑗.

• A matching between two 𝑁-sets of 
directional is a bijective map 𝑓
between them (or their indices).
• It preserves order: 𝑓 𝑢𝑟 = 𝑣𝑠⟺
𝑓 𝑢𝑟+1 = 𝑣𝑠+1



Effort

• Based on a matching 𝑓, the notions of 
rotation and principal rotation can be 
generalized to multi-valued fields. 

• 𝛿𝑖𝑗
𝑟 : rotation between 𝑢𝑟 and 𝑓 𝑢𝑟

• Effort of the matching 𝑓: 𝑌𝑖𝑗 =  𝑟=1
𝑁 𝛿𝑖𝑗

𝑟

• Symmetric 𝑁-directional field
• 𝛿𝑖𝑗 = 𝛿𝑖𝑗

𝑟 for every 𝑟

• The efforts of different (order-preserving) 
matchings differ by 2𝜋.
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Angle-Based

• Local thonormal frame {𝑒1, 𝑒2} on each 
tangent space

• 1-direction (unit vector) fields can be concisely 
described within each tangent space by a 
signed angle 𝜑 that is relative to 𝑒1.

• Rotation angle:
• 𝛿𝑖𝑗 = 𝜙𝑗 − (𝜙𝑖 + 𝑋𝑖𝑗 + 2𝜋𝑘𝑖𝑗)

• 𝑋𝑖𝑗: the change of bases e between the flattened 
tangent spaces 𝑖 and 𝑗

• 𝑘𝑖𝑗: period jump

𝛿𝑖𝑗



Angle-Based 𝑁 symmetry directions

• A single 𝜑 representing the set of 𝑁
symmetry directions.
• {𝜙 + 𝑙 ⋅ 2𝜋/𝑁|𝑙 ∈ {0,… ,𝑁 − 1}}

• Period jump to be an integer multiple 

of 
1

𝑁
.

• Rotation angle:

• 𝛿𝑖𝑗 = 𝜙𝑗 − (𝜙𝑖 + 𝑋𝑖𝑗 +
2𝜋

𝑁
𝑘𝑖𝑗)



Pros and cons

• Advantage
• Directions, as well as possible period jumps, are represented 

explicitly.

• A linear expression of the rotation angle.

• Disadvantage
• The use of integer variables, which leads to discrete optimization 

problems.



Cartesian and Complex

• A vector 𝑣 in a two-dimensional tangent space can be represented 
using Cartesian coordinates (from 𝑅2) in the local coordinate system
{𝑒1, 𝑒2}, or equivalently as complex numbers (from 𝐶).

• Connection to angle-based representation

𝑣 =
cos𝜙
sin𝜙

= 𝑒𝑖𝜙

• The change of bases from one tangent space to another
cos 𝑋𝑖𝑗 −sin𝑋𝑖𝑗
sin 𝑋𝑖𝑗 cos 𝑋𝑖𝑗

or 𝑒𝑖𝑋𝑖𝑗



𝑁-directional fields

• By multiplying the argument of the trigonometric functions, or taking 
the complex exponential to the power of 𝑁

𝑣𝑁 =
cos𝑁𝜙
sin𝑁𝜙

= 𝑒𝑖𝑁𝜙

• 𝑒𝑖𝑁𝜙𝑙 = 𝑒𝑖𝑁𝜙

• 𝜙𝑙 = 𝜙 + 𝑙 ⋅
2𝜋

𝑁
, ∀𝑙 ∈ {0,… ,𝑁 − 1}

• 𝑣𝑁 becomes a 1-directional field.

• 𝑋𝑖𝑗 becomes 𝑁𝑋𝑖𝑗:

cos𝑁𝑋𝑖𝑗 −sin𝑁𝑋𝑖𝑗
sin𝑁𝑋𝑖𝑗 cos𝑁𝑋𝑖𝑗

or 𝑒𝑖𝑁𝑋𝑖𝑗



Complex Polynomials

• Analogously, every 𝑁-vector set {𝑢1, … 𝑢𝑁}, in the complex form 𝑢𝑖 ∈
𝐶, can be uniquely identified as the roots of a complex polynomial 
𝑝(𝑧) = (𝑧 − 𝑢1)… (𝑧 − 𝑢𝑁).

• Writing 𝑝 in monomial form, 𝑝(𝑧) =  𝑖 𝑐𝑛𝑧
𝑛, the coefficient set {𝑐𝑛}

is thus an order-invariant representative of a 1 𝑁–vector.
• 𝑁-PolyVector

• A generation of former representation.



Comparison

• Comparing between PolyVectors on adjacent tangent spaces amounts 
to comparing polynomial coefficient.

• Every coefficient 𝑐𝑛 contains multiplications of 𝑁 − 𝑛 roots.



Tensors

• Real-valued 2 × 2matrices in local coordinates

𝑇 =
𝑇11 𝑇12
𝑇21 𝑇22

• Symmetric Tensors
• an eigen-decomposition 𝑇 = 𝑈Λ𝑈𝑇

• Λ = diag 𝜆1, 𝜆2 , two real eigenvalues

• 𝑈 = 𝑢1, 𝑢2 , two (orthogonal) eigenvectors with ||𝑢𝑖|| = 1

• Since eigenvectors are only determined up to sign, a rank-2 tensor 
field can in fact be interpreted as two orthogonal 2-direction fields 
± 𝑢𝑖.
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Objectives & Constraints

• Different applications 
have different 
requirements.
• various objectives can be 

used for vector field 
optimization



Objectives

• Fairness
• measuring how variable, or rather, non-similar, the field is between adjacent 

tangent spaces.

• Parallelity

• Orthogonality

• Minimization of curl

• ……



Parallelity – as-parallel-as-possible

• Parallel
• The direction in one tangent space is obtained via parallel transport from the 

directions in adjacent tangent spaces.

• As-parallel-as-possible goal:

𝐸𝑓𝑎𝑖𝑟−𝑁 =
𝑁

2
 

𝑒

𝑤𝑒 𝛿𝑒
2



An example of cross field

𝐸𝑓𝑎𝑖𝑟−4 =
4

2
 

𝑒

𝑤𝑒 𝜙𝑗 − (𝜙𝑖 + 𝑋𝑖𝑗 +
2𝜋

𝑁
𝑘𝑖𝑗)

2

Variables: 𝜙𝑖 and 𝑘𝑖𝑗 (integers)

Greedy solver:

1. Treat 𝑘𝑖𝑗 as floating number, minimize 𝐸𝑓𝑎𝑖𝑟−4
2. Round the variable which causes the smallest 

absolute error if we round it to the nearest integer. 

3. Repeat above two steps.



Constraints

• Alignment
• fit certain prescribed directions

• principal curvature

• strokes given by an artist on the 
surface

• boundary curves

• feature lines

• Soft data term
• Least square 

• Hard constraint
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Constraints

• Symmetry:
• If the surface has 

bilateral symmetry, it is 
advantageous if the 
designed directional 
fields adhere to the 
same symmetry, 
allowing field-guided 
applications to preserve 
the symmetry as well.



Constraints

• Surface mapping:
• Given multiple shapes with a correspondence between them, 

we could require that the directional fields commute with the 
correspondence, effectively designing directional fields jointly 
on multiple shapes.



Constraints

• Surface mapping:
• Given multiple shapes with a correspondence between them, 

we could require that the directional fields commute with the 
correspondence, effectively designing directional fields jointly 
on multiple shapes.



Integrable field

• In most of these applications, vector fields are computed to serve as a 
guiding basis for the construction of global parameterizations.

• Parameterization coordinates:
• Defined on vertices

• Two scalar variables

• Gradients of parameterization coordinates are two separate vector 
fields. 
• Integrable

• Curl-free



Integrable field

• Thinking from a opposite way:
• If the vector fields are curl-free, it 

can be integrated to be 
parameterization coordinates.

• Minimize the difference between 
the tangent field and the gradient 
of the function in the least-
squares sense.

• Thus, if the curl-free field is 
foldover-free and with low 
distortion, the parameterization is 
also foldover-free and with low 
distortion.



Integrability

• Scalar function ℎ:𝑀 → 𝑅
𝛻ℎ𝑓 , 𝑒 = 𝛻ℎ𝑔, 𝑒

• It trivially follows that 𝛻ℎ𝑓 , 𝑒 − 𝛻ℎ𝑔, 𝑒
is zero for any function ℎ.

• Discrete curl for any vector field 𝛼:
• 𝛼𝑓 , 𝑒 − 𝛼𝑔, 𝑒

• 𝛼 is curl-free if and only if 𝛼𝑓 , 𝑒 = 𝛼𝑔, 𝑒 .

𝑒
𝑔

𝑓

Circulation:  𝐿 𝑣 ∙ 𝑑𝑟



Vector field design

𝐽 =

𝜕𝑢

𝜕𝑥

𝜕𝑢

𝜕𝑦
𝜕𝑣

𝜕𝑥

𝜕𝑣

𝜕𝑦

, 𝛼 =
𝜕𝑢

𝜕𝑥
,
𝜕𝑢

𝜕𝑦
, 𝛽 = (

𝜕𝑣

𝜕𝑥
,
𝜕𝑣

𝜕𝑦
)

• Objective:
• Fairness

• Constraints:
• Curl-free
• Foldover-free
• Low distortion



Poisson integration

min
ℎ
 

𝑓

𝛻ℎ𝑓 − 𝛼𝑓 2
2



Extension

• Another question:
• Given a cross field, how to modify it to be curl-free?

• Paper: Computing inversion-free mappings by simplex assembly
𝐸 = 𝐸𝐶 + 𝜆𝐸𝑓𝑖𝑒𝑙𝑑

𝐸𝑓𝑖𝑒𝑙𝑑 = 

𝑒

𝛼𝑓 , 𝑒 − 𝛼𝑔, 𝑒
2
+ 𝛽𝑓 , 𝑒 − 𝛽𝑔, 𝑒

2

𝐸𝐶: distortion energy

Increase 𝜆 to make 𝐸𝑓𝑖𝑒𝑙𝑑 approach zero



Properties of resulting field

• Non-Orthogonal

• Different lengths

• Frame field 

𝜶

𝜷



Frame Fields

Isotropic Anisotropic



Frame Fields

• Cross filed (4-RoSy field)
• 𝑋 = 𝒖, 𝒖⊥, −𝒖,−𝒖⊥

• Frame field (22 vector field)
• 𝐹 = 𝒗,𝒘,−𝒗,−𝒘

• Canonical decomposition
• 𝐹 = 𝑊𝑋 (polar decomposition)

• 𝑊:  symmetric positive definite matrix



Paper: Frame Fields: Anisotropic and Non-
Orthogonal Cross Fields

• A frame field is said to be continuous/smooth if both 𝑋 and 𝑊 are 
continuous/smooth.

• Synthesis of frame field:
• Separately design 𝑋 and 𝑊

• 𝑋: formerly method, e.g., 𝐸𝑓𝑎𝑖𝑟−4 =
4

2
 𝑒𝑤𝑒 𝜙𝑗 − (𝜙𝑖 + 𝑋𝑖𝑗 +

2𝜋

𝑁
𝑘𝑖𝑗)

2

• 𝑊: Laplacian smoothing, guarantee that the resulting 𝑊 are SPD.



An example

Constraints Frame field Deformation Isotropic Anisotropic



Paper: Frame Field Generation through Metric 
Customization
• Generic frame fields (with arbitrary anisotropy, orientation, and sizing) 

can be regarded as cross fields in a specific Riemannian metric.
• First compute a discrete metric on the input surface.



22 directional field
Paper: General Planar Quadrilateral Mesh Design Using Conjugate Direction Field

• 𝐹 = 𝒗,𝒘,−𝒗,−𝒘
• 𝒗 = 𝒘

• Equivalent classes using permutation
• 𝒗,𝒘,−𝒗,−𝒘

• 𝒘,−𝒗,−𝒘, 𝒗

• −𝒗,−𝒘, 𝒗,𝒘

• −𝒘,𝒗,𝒘,−𝒗

• Signed-permutation matrix group 𝐺

•
1 0
0 1

,
0 1
−1 0

,
−1 0
0 −1

,
0 −1
1 0



Smoothness of 22 directional field

• Transformation between adjacent faces
𝑣𝑓|𝑤𝑓 = 𝑣𝑔|𝑤𝑔 𝑃𝑓𝑔

• Smoothness measure
• closeness from 𝑃𝑓𝑔 to 𝐺

• 𝐸𝑓𝑔 =  𝑖 𝐻 𝑃𝑓𝑔 ⋅, 𝑖 + 𝐻(𝑃𝑓𝑔 𝑖,⋅ ) +

 𝑖 𝑃𝑓𝑔 ⋅, 𝑖
2 − 1

2
+ 𝑃𝑓𝑔 𝑖,⋅

2 − 1
2
+

det 𝑃𝑓𝑔 − 1
2

• H 𝜂 = 𝜂𝑥
2𝜂𝑦
2 + 𝜂𝑦

2𝜂𝑧
2 + 𝜂𝑧

2𝜂𝑥
2

𝑒
𝑔

𝑓



Example



Extension to 3D field
Paper: All-Hex Meshing using Singularity-Restricted Field

• 𝐹 = {𝑈, 𝑉,𝑊}
• Right-handled: 𝑈 × 𝑉 ⋅ 𝑊 > 0

• 24 equivalent classes since the permutations form the chiral cubical 
symmetry group 𝐺.
• First vector has six options
• Second one has four options
• Third one only has one options

• 6 × 4 × 1 = 24

• Smoothness measure: 
• closeness from 𝑃𝑓𝑔 to 𝐺
• Similar to former method



Efficiency 

• Former methods:
• Large-scale sparse linear system or nonlinear energy

• Expensive: too many variables

• Global view

• Is there any other ways?
• Reducing the variable number

• Starting from local view



Paper: Instant Field-Aligned Meshes



Key techniques

• Gauss-Seidel method

𝑣𝑖 ←
1

 𝑗∈Ω(𝑖)𝑤𝑖𝑗
 

𝑗∈Ω(𝑖)

𝑤𝑖𝑗𝑣𝑗

• Multiresolution hierarchy
• improve convergence

• allow the algorithm to move 
out of local minima
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Convex polygon

• One can walk between any two vertices along a straight line without 
ever leaving the polygon.



Convex polygon

• A set 𝑃 ∈ 𝑅𝑑 is convex if 𝑝𝑞 ∈ 𝑃, ∀𝑝, 𝑞 ∈ 𝑃.

• An alternatively equivalent way to phrase convexity:
• For every line 𝑙 ∈ 𝑅𝑑, the intersection 𝑙 ∩ 𝑃 is connected

• For any family {𝑃𝑖} of convex sets, the intersection ∩𝑖 𝑃𝑖 is convex.



Convex hull

• The convex hull of a finite point set 𝑃 ∈ 𝑅𝑑 forms a convex polytope, 
denoted as 𝑐𝑜𝑛𝑣(𝑃).

• Each 𝑝 ∈ 𝑃 for which 𝑝 ∉ 𝑐𝑜𝑛𝑣(𝑃 ∖ {𝑝} ) is called a vertex of 
𝑐𝑜𝑛𝑣(𝑃).

• A vertex of 𝑐𝑜𝑛𝑣(𝑃) is also called an extremal point of 𝑃.

• A convex polytope in 𝑅2 is called a convex polygon.



An example of 𝑐𝑜𝑛𝑣(𝑃)

Extremal point



Trivial algorithms of Convex hull

• Carathéodory’s Theorem
• Test for every point 𝑝 ∈ 𝑃 whether there are 𝑞, 𝑟, 𝑠 ∈ 𝑃 ∖ {𝑝} such 

that 𝑝 is inside the triangle with vertices 𝑞, 𝑟, and 𝑠. 
• Runtime 𝑂(𝑛4).

• The Separation Theorem:
• Test for every pair (𝑝, 𝑞) ∈ 𝑃2 whether all points from 𝑃 ∖
{𝑝, 𝑞} are to the left of the directed line through 𝑝 and 𝑞 (or on the 
line segment 𝑝𝑞). 

• Runtime 𝑂(𝑛3).



Triangulation of polygon

• A triangulation nicely partitions a polygon into triangles, which allows, 
for instance, to easily compute the area or a guarding of the polygon.

• Another typical application scenario is to use a triangulation 𝑇 for 
interpolation.



Triangulation of a point set

• A triangulation should then partition the convex hull while respecting 
the points in the interior.



Definition

• A triangulation of a finite point 
set 𝑃 ⊂ 𝑅2 is a collection 𝒯 of 
triangles, such that:
• (1) 𝑐𝑜𝑛𝑣 𝑃 =∪𝑇∈𝒯 𝑇

• (2) 𝑃 =∪𝑇∈𝒯 𝑉(𝑇)

• (3) For every distinct pair 𝑇, 𝑈 ∈ 𝒯 , 
the intersection 𝑇 ∩ 𝑈 is either a 
common vertex, or a common 
edge, or empty. 



Various triangulations



Delaunay triangulation

• Definition: For a given set 𝑃 of discrete points in a plane is a 
triangulation 𝐷𝑇(𝑃) such that no point in 𝑃 is inside the circumcircle 
of any triangle in 𝐷𝑇(𝑃).

• Empty Circle property

circumcircle 



Empty Circle



Four points in convex position



The Lawson Flip algorithm

• (1) Compute some triangulation of P

• (2) While there exists a subtriangulation of four points in convex 
position that is not Delaunay, replace this subtriangulation by the 
other triangulation of the four points.



Theorem

Let 𝑃 ⊆ 𝑅2 be a set of 𝑛 points, equipped with some triangulation 𝒯. 

The Lawson flip algorithm terminates after at most 
𝑛
2

= 𝑂(𝑛2) flips, 

and the resulting triangulation 𝐷 is a Delaunay triangulation of 𝑃.

Two-step proof: 

1. The program described above always terminates.

2. The algorithm does what it claims to do, namely the result is a 
Delaunay triangulation.



The Lifting Map

• Given a point 𝑝 = 𝑥, 𝑦 ∈ 𝑅2, its lifting 𝑙(𝑝) is the point
𝑙 𝑝 = 𝑥, 𝑦, 𝑥2 + 𝑦2 ∈ 𝑅3

Geometrically, 𝑙 “lifts” the point vertically up until it lies on the unit 
paraboloid: 



Important property of the lifting map

• Lemma: Let 𝐶 ⊆ 𝑅2 be a circle of positive radius. The “lifted circle” 
𝑙 𝐶 = 𝑙(𝑝 𝑝 ∈ 𝐶 is contained in a unique plane ℎ(𝐶) ⊆ 𝑅3. 

• Moreover, a point 𝑝 ∈ 𝑅2 is strictly inside (outside, respectively) of 𝐶 if 
and only if the lifted point 𝑙(𝑝) is strictly below (above, respectively) ℎ(𝐶).



(1) Termination

Their lifted images
form a tetrahedron.



(1) Termination



(1) Termination

• A Lawson flip can therefore be interpreted as an operation that replaces 
the top two triangles of a tetrahedron by the bottom two ones. 

• If we consider the lifted image of the current triangulation, we therefore 
have a surface in 𝑅3 whose pointwise height can only decrease through 
Lawson flips. 

• In particular, once an edge has been flipped, this edge will be strictly 
above the resulting surface and can therefore never be flipped a second 
time. Since 𝑛 points can span at most 

𝑛
2

edges, the bound on the 
number of flips follows.



(2) Correctness

• Locally Delaunay: Let Δ, Δ′ be two adjacent triangles in the 
triangulation 𝐷 that results from the Lawson flip algorithm. Then the 
circumcircle of Δ does not have any vertex of Δ′ in its interior, and vice 
versa.

• Locally Delaunay ⟺ Globally Delaunay:
• contradiction



Locally Delaunay ⟺ Globally Delaunay
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Maximize the minimum angle

Long and skinny triangles Much closer to an equilateral triangle



Maximize the minimum angle

• Indeed, we will show that Delaunay triangulations maximize the 
smallest angle among all triangulations of a given point set. 

• Note that this does not imply that there are no long and skinny 
triangles in a Delaunay triangulation.

• But if there is a long and skinny triangle in a Delaunay triangulation, 
then there is an at least as long and skinny triangle in every
triangulation of the point set. 



Maximize the minimum angle

• A flip replaces six interior angles 
by six other interior angles, and we 
will actually show that the smallest 
of the six angles strictly increases 
under the flip.
• Before the flip:

• 𝛼1 + 𝛼2, 𝛼3, 𝛼4, 𝛼1, 𝛼2, 𝛼3 + 𝛼4

• After the flip:
• 𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝛼1 + 𝛼4, 𝛼2 + 𝛼3

• 𝛼1 > 𝛼1, 𝛼2 > 𝛼2, 𝛼3 > 𝛼3, 𝛼4 > 𝛼4

𝛼1 + 𝛼4 > 𝛼4, 𝛼2 + 𝛼3 > 𝛼3
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Optimal Delaunay triangulation



Thinking from surface approximation

𝐸 =  

𝑇∈𝒯

 

𝑇

 𝑢(𝑥) − 𝑢(𝑥) 𝑑𝒙

𝑢(𝑥): 𝑧 = 𝑥2 + 𝑦2

 𝑢(𝑥): piecewise linear interpolation of 𝑢

𝒯: a triangulation

Fix positions of vertices, Delaunay triangulation is optimal.



Update of vertices’ positions

• Fix the triangulation, update the vertices.

𝐸 =  

𝑇∈𝒯

 

𝑇

 𝑢(𝑥) − 𝑢(𝑥) 𝑑𝒙 =  

𝑇∈𝒯

 

𝑇

 𝑢(𝑥) 𝑑𝒙 + 𝐶

=  

𝑇∈𝒯

|𝑇|

3
(𝑢 𝑝𝑖 + 𝑢 𝑝𝑗 + 𝑢(𝑝𝑘)) + 𝐶

𝛻𝐸𝑝𝑖
=  

𝑇∈Ω(𝑖)

𝛻|𝑇|

3
(𝑢 𝑝𝑖 + 𝑢 𝑝𝑗 + 𝑢(𝑝𝑘)) +

Ω

3
𝛻𝑢 𝑝𝑖 = 0

Because  𝑇∈Ω(𝑖)
𝛻|𝑇|

3
𝑢 𝑝𝑖 = 0

𝛻𝑢 𝑝𝑖 = −
1

Ω
 

𝑇∈Ω(𝑖)

𝛻|𝑇|

3
(𝑢 𝑝𝑗 + 𝑢(𝑝𝑘))



Optimal Delaunay triangulation

• Alternately iterate:
• Update triangulation

• Update vertices

• Extension to any convex function 𝑢(𝑥):
• Delaunay triangulation → regular triangulation

𝑢 𝑥, 𝑦 = e
(𝑥2+𝑦2)

10

Ω = −5, 5 2
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Post Office Problem

• Suppose there are 𝑛 post offices 𝑝1, . . . , 𝑝𝑛 in a city.

• Someone who is located at a position 𝑞 within the city would like to 
know which post office is closest to him.



Post Office Problem

• Do not think from the queries.

• Our long term goal is to come up with a data structure on top of 𝑃
that allows to answer any possible query efficiently.

• Basic idea:
• Partition the query space into regions on which is the answer is the same.

• In our case, this amounts to partition the plane into regions such that for all 
points within a region the same point from 𝑃 is closest.



Two post offices

• Proposition
• For any two distinct points in 𝑅𝑑, the bisector is a hyperplane, that is, in 𝑅2 it 

is a line.



Voronoi cell

• Given a set 𝑃 = {𝑝1, . . . , 𝑝𝑛} of points in 𝑅2, for 𝑝𝑖 ∈ 𝑃 denote the 
Voronoi cell 𝑉𝑃(𝑖) of 𝑝𝑖 by 

𝑉𝑃 𝑖 ≔ 𝑞 ∈ 𝑅2 | 𝑞 − 𝑝𝑖 ≤ 𝑞 − 𝑝 , ∀𝑝 ∈ 𝑃

1. 𝑉𝑃 𝑖 =∩𝑗≠𝑖 𝐻(𝑝𝑖 , 𝑝𝑗)

2. 𝑉𝑃 𝑖 is non-empty and convex. 

3. Observe that every point of the plane lies in some Voronoi cell but 
no point lies in the interior of two Voronoi cells. Therefore these 
cells form a subdivision of the plane. 



Voronoi Diagram

• The Voronoi Diagram 𝑉𝐷(𝑃) of a set 𝑃 = {𝑝1, . . . , 𝑝𝑛} of points in 𝑅2

is the subdivision of the plane induced by the Voronoi cells 𝑉𝑃(𝑖), for 
𝑖 = 1, . . . , 𝑛.

𝑉𝑉(𝑃): the set of vertices

𝑉𝐸(𝑃): the set of edges

𝑉𝑅(𝑃): the set of regions



Lemma 1

• For every vertex 𝑣 ∈ 𝑉𝑉(𝑃) the following statements hold.
• 1) 𝑣 is the common intersection of at least three edges from 𝑉𝐸(𝑃);

• 2) 𝑣 is incident to at least three regions from 𝑉𝑅(𝑃);

Proof: As all Voronoi cells are convex, each interior
angle is less than 𝜋, thus 𝑘 ≥ 3 of them
must be incident to 𝑣.



Lemma 1

• For every vertex 𝑣 ∈ 𝑉𝑉(𝑃) the following statements hold.
• 1) 𝑣 is the common intersection of at least three edges from 𝑉𝐸(𝑃);

• 2) 𝑣 is incident to at least three regions from 𝑉𝑅(𝑃);

• 3) 𝑣 is the center of a circle 𝐶(𝑣) through at least three points from 𝑃;



Lemma 1

• For every vertex 𝑣 ∈ 𝑉𝑉(𝑃) the following statements hold.
• 1) 𝑣 is the common intersection of at least three edges from 𝑉𝐸(𝑃);

• 2) 𝑣 is incident to at least three regions from 𝑉𝑅(𝑃);

• 3) 𝑣 is the center of a circle 𝐶(𝑣) through at least three points from 𝑃;

• 4) 𝐶 𝑣 ∘ ∩ 𝑃 = ∅. 𝐶 𝑣 ∘: The interior of 𝐶 𝑣 .

Suppose there exists a point 𝑝𝑙∈ 𝐶 𝑣
∘.

Then the vertex 𝑣 is closer to 𝑝𝑙 than it is to 
any of 𝑝1, . . . , 𝑝𝑘, in contradiction to the fact 
that 𝑣 is contained in all of 𝑉𝑃 1 , . . . , 𝑉𝑃 𝑘 .



Lemma 2

• There is an unbounded Voronoi edge bounding 
𝑉𝑃(𝑖) and 𝑉𝑃 𝑗 ⟺ 𝑝𝑖𝑝𝑗 ∩ 𝑃 = {𝑝𝑖 , 𝑝𝑗} and 
𝑝𝑖𝑝𝑗 ∈ 𝜕𝑐𝑜𝑛𝑣(𝑃), where the latter denotes the 
boundary of the convex hull of 𝑃.

• Proof: There is an unbounded Voronoi edge bounding 
𝑉𝑃(𝑖) and 𝑉𝑃(𝑗)⟺ there is a ray 𝜌 ⊂ 𝑏𝑖,𝑗 such that 
𝑟 − 𝑝𝑘 > 𝑟 − 𝑝𝑖 = 𝑟 − 𝑝𝑗 , ∀𝑟 ∈ 𝜌 𝑎𝑛𝑑 𝑝𝑘 ∈
𝑃\{𝑝𝑖 , 𝑝𝑗}. Equivalently, there is a ray 𝜌 ⊂ 𝑏𝑖,𝑗 such that 
for every point 𝑟 ∈ 𝜌 the circle 𝐶 ∈ 𝐷 centered at 𝑟 does 
not contain any point from 𝑃 in its interior. 
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Duality

• A straight-line dual of a plane graph 𝐺 is a graph 𝐺′ defined as follows: 
choose a point for each face of 𝐺 and connect any two such points by a 
straight edge, if the corresponding faces share an edge of 𝐺.



Delaunay triangulation

• Theorem: The straight-line dual of 𝑉𝐷(𝑃) for a set 𝑃 ⊂ 𝑅2 of 𝑛 >
3 points in general position (no three points from 𝑃 are collinear and 
no four points from 𝑃 are cocircular) is a triangulation: the unique 
Delaunay triangulation of 𝑃.

Proof: ⟹
1. convex hull
2. Triangles 
3. Empty circle property

Proof: ⟸
1. Circumcenter is 
selected for each face.
2. Empty circle property.
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Problem

Update vertices





Definition – CVT

A class of Voronoi tessellations where 
each site coincides with the centroid 
(i.e., center of mass) of its Voronoi 
region. 

𝑐𝑖 =
 𝑉𝑖
𝑥𝜌(𝑥) 𝑑𝑥

 𝑉𝑖
𝜌 𝑥 𝑑𝑥



Applications – Remeshing



Energy function

𝐸 𝑝1, … , 𝑝𝑛, 𝑉1, … , 𝑉𝑛 = 

𝑖=1

𝑛

 

𝑉𝑖

𝑥 − 𝑝𝑖
2 𝑑𝑥

1. For a fixed set of sites 𝑃 = {𝑝1, . . . , 𝑝𝑛}, the energy function is 
minimized if {𝑉1, … , 𝑉𝑛} is a Voronoi tessellation.

2. For the fixed regions, the 𝑝𝑖 are the mass centroids 𝑐𝑖 of their 
corresponding regions 𝑉𝑖.



Lloyd iteration

• 1. Construct the Voronoi tessellation corresponding to the sites 𝑝𝑖.

• 2. Compute the centroids 𝑐𝑖 of the Voronoi regions 𝑉𝑖 and move the 
sites 𝑝𝑖 to their respective centroids 𝑐𝑖.

• 3. Repeat steps 1 and 2 until satisfactory convergence is achieved.
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Remeshing

• Given a 3D mesh, compute another mesh, whose elements satisfy 
some quality requirements, while approximating the input acceptably.



Remeshing

• A key technique for mesh quality improvement

• Goal
• 1. Reduce the complexity of an input surface mesh

• subject to certain quality criteria

• 2. Improve the quality of a mesh
• Different applications imply different quality criteria and requirements.

• Given a 3D mesh, compute another mesh, whose elements 
satisfy some quality requirements, while approximating the 
input acceptably.



Discussion

• Input: a manifold triangle mesh or part of it.

• Mesh quality
• Sampling density

• Regularity

• Size

• Orientation

• Alignment

• Shape of the mesh elements.

• Non-topological issues (mesh repair)



Local Structure

• Element shape
• Isometric

• Anisotropic

anisotropic isotropic



Local Structure

• Element density
• uniform VS. nonuniform or adaptive



Local Structure

• Element alignment and orientation
• elements should align to sharp features

• orientation of anisotropic elements



Global structure

• Vertex
• Regular

• Valence = 6 for triangle mesh

• Valence = 4 for quad mesh

• Irregular (singular)

• Global
• Irregular

• Semiregular
• regular subdivision of a coarse 

initial mesh

• Highly regular
• most vertices are regular

• Regular
• all vertices are regular



Outlines

• Isotropic remeshing
• Error-bounded method

• Error-Bounded and Feature Preserving Surface Remeshing with Minimal Angle 
Improvement

• Improve small and large angles
• Optimal Delaunay Triangulation (ODT)
• Centroidal Patch Triangulation (CPT)

• Anisotropic remeshing
• Introduction
• ODT with general convex function
• Local convex triangulation
• Partial-based method
• High-dim embedding





Incremental Remeshing

• Input: triangle mesh and a target edge length

• Method
• Split long edges

• Collapse short edges

• Relocate vertices



Pseudo-code

Remesh(target edge length)

Low_e = 
4

5
* target edge length

High_e = 
4

3
* target edge length

for i = 0 to 10 do

split long edges( high_e )

collapse short edges( low_e, high_e )

equalize valences()

tangential relaxation()

project to surface()



Discussion

• Proper threshold 
4

5
and 

4

3
are essential.

• split long edges( high_e )
• visits all edges of the current mesh

• If an edge is longer than the given threshold high_e, the edge is split at its

midpoint and the two adjacent triangles are bisected

Edge split



Discussion
• collapse short edges( low_e, high_e )

• collapses and thus removes all edges that are shorter than a threshold low_e.

• Issue
• by collapsing along chains of short edges, the algorithm may create new 

edges that are arbitrarily long.
• This issue is resolved by testing before each collapse whether the collapse 

would produce an edge that is longer than high.
• If so, the collapse is not executed.



Discussion

• equalize valences()
• equalizes the vertex valences by flipping edges. 

• The algorithm tentatively flips each edge and checks whether the deviation to 
the target valences decreases.

• The tangential relaxation()
• an iterative smoothing filter to the mesh

• the vertex movement has to be constrained to the vertex tangent plane in 
order to stabilize the following projection operator.



Discussion

• The tangential relaxation(): uniform Laplacian weights

𝑞 =
1

𝑁𝑝
 

𝑝𝑗∈Ω(𝑝)

𝑝𝑗

projecting 𝑞 onto 𝑝’𝑠 tangent plane:
𝑝′ = 𝑞 + 𝑛𝑛𝑡(𝑝 − 𝑞)

• Project to surface()
• maps the vertices back to the surface.

• CGAL: AABB tree



Adaptive edge length

• 𝑙 = 2 2𝑟𝜀 − 𝜀2

• 𝐿 𝑥𝑖 =
6𝜀

𝑘𝑖
− 3𝜀2

𝑘𝑖: maximum absolute 
curvature at 𝑥𝑖



Discussion

• Feature preservation.
• feature edges and vertices have already been marked in the input 

model.
• 1. Corner vertices with more than two or exactly one incident feature 

edge have to be preserved and are excluded from all topological and 
geometric operations.

• 2. Feature vertices may only be collapsed along their incident feature 
edges.

• 3. Splitting a feature edge creates two new feature edges and a feature 
vertex.

• 4. Feature edges are never flipped.
• 5. Tangential smoothing of feature vertices is restricted to univariate 

smoothing along the corresponding feature lines. (How to do???)





Parameterization-based method

• All remeshing algorithms compute point locations on or near 
the original surface.

• Global parameterization.
• The input model is globally parameterized onto a 2D domain.

• Sample points can then be easily distributed and relocated in the 
2D domain.

• Be lifted to three dimensions

• Disadvantages:
• Parametric distortion

• Discontinuities when the mesh needs to be cut into a topological disk.



Global parameterization



Closed surface

• Parameterization-based method requires cut paths.

• How to generate the cut paths:
• Distortion, D-Charts

• Visit at least twice
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Approximation

• Definition:
• Given a 3D mesh, compute another mesh, whose elements satisfy some 

quality requirements, while approximating the input acceptably.



Hausdorff distance
https://en.wikipedia.org/wiki/Hausdorff_distance

• Hausdorff distance measures how far two subsets of a metric space 
are from each other. 

• Let 𝑋 and 𝑌 be two non-empty subsets of a metric space (𝑀, 𝑑). We 
define their Hausdorff distance 𝑑𝐻(𝑋, 𝑌) by

𝑑𝐻 𝑋, 𝑌 = max sup
𝑥∈𝑋

inf
𝑦∈𝑌

𝑑(𝑥, 𝑦) , sup
𝑦∈𝑌

inf
𝑥∈𝑋

𝑑(𝑥, 𝑦)

where sup represents the supremum and inf the infimum.



Hausdorff distance

In general:
sup
𝑥∈𝑋

inf
𝑦∈𝑌

𝑑(𝑥, 𝑦) ≠ sup
𝑦∈𝑌

inf
𝑥∈𝑋

𝑑(𝑥, 𝑦)



Hausdorff distance on triangular mesh

• Hausdorff distance between 𝑀1 and 𝑀2:
𝑑𝐻 𝑀1, 𝑀2 = max 𝑑ℎ(𝑀1, 𝑀2), 𝑑ℎ(𝑀2, 𝑀1)

where
𝑑ℎ 𝑆, 𝑇 = max

𝑝∈𝑆
min
𝑞∈𝑇

𝑑(𝑝, 𝑞)

Note: 𝑑 𝑝, 𝑇 = min
𝑞∈𝑇

𝑑(𝑝, 𝑞) is the distance from 𝑝 to 𝑇.

The distance of a point 𝑝 to a surface 𝑇 is defined as the shortest 
distance between 𝑝 and any point of 𝑇.



Approximating 𝑑𝐻 𝑀1, 𝑀2

• Assume that 𝑀1 is sampled by a point set 𝑆1 ⊂ 𝑀1 and 𝑀2 is 
sampled by a point set 𝑆2 ⊂ 𝑀2

• 𝑑ℎ 𝑀1, 𝑀2 can be approximated by
𝑑ℎ 𝑀1, 𝑀2 ≈ max

𝑎∈𝑆1
𝑑(𝑎,𝑀2)

• ⟹ 𝑑𝐻 𝑀1, 𝑀2 = max max
𝑎∈𝑆1

𝑑(𝑎,𝑀2) ,max
𝑏∈𝑆2

𝑑(𝑏,𝑀1)

• It provides significantly higher accuracy than a point cloud distance
𝑑𝐻(𝑆1, 𝑆2).



Sampling

Stratified sampling process



Error-bounded method

• A local operator is only executed if it respects the approximation error 
bound.
• never leaving the feasible set of meshes with approximation error

• A local operator
• Edge collapse

• Edge split

• Edge flip

• Smoothing / Relocation

• ……



Main limitations

• 1. Time consuming

• 2. Infinite loop



Thinking from a different view



Thinking from a different view

• A key observation: more uniformly distributed vertices are used for 
remeshing, the Hausdorff distance between the remeshed and input 
meshes is usually easily bounded.

• During the remeshing process, intermediate meshes are allowed to 
violate the error-bounded constraint, and attempt to reduce the 
Hausdorff distance by adding vertices into the mesh.



Algorithm

• 1. Initialize a target edge length field 𝐿(𝑥)

• 2. Perform edge-based remeshing using 𝐿(𝑥)

• If 𝑑ℎ 𝑀1, 𝑀2 ≤ 𝛿 , stop the algorithm; otherwise, adaptively adjust 𝐿(𝑥), and 
then go to step (2).

first Third Fifth sixteenth
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Angles
Isotropic Surface Remeshing without Large and Small Angles

• All the triangles with small or large angles outside the desired bounds 
[𝛽min, 𝛽max] are processed. 

• Large angle removal: edge splitting

• Small angle improvement: edge collapsing



Large angle removal

1. Split
2. Flip
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Optimal Delaunay Triangulation (ODT)

𝐸 =  

𝑇∈𝒯

 

𝑇

 𝑢(𝑥) − 𝑢(𝑥) 𝑑𝒙

𝑢(𝑥): 𝑧 = 𝑥2 + 𝑦2

 𝑢(𝑥): piecewise linear interpolation of 𝑢

𝒯: a triangulation

Fix positions of vertices, Delaunay triangulation is optimal.



Update of vertices’ positions

• Fix the triangulation, update the vertices.

𝐸 =  

𝑇∈𝒯

 

𝑇

 𝑢(𝑥) − 𝑢(𝑥) 𝑑𝒙 =  

𝑇∈𝒯

 

𝑇

 𝑢(𝑥) 𝑑𝒙 + 𝐶

=  

𝑇∈𝒯

|𝑇|

3
(𝑢 𝑝𝑖 + 𝑢 𝑝𝑗 + 𝑢(𝑝𝑘)) + 𝐶

𝛻𝐸𝑝𝑖 =  

𝑇∈Ω(𝑖)

𝛻|𝑇|

3
(𝑢 𝑝𝑖 + 𝑢 𝑝𝑗 + 𝑢(𝑝𝑘)) +

Ω

3
𝛻𝑢 𝑝𝑖 = 0

Because  𝑇∈Ω(𝑖)
𝛻|𝑇|

3
𝑢 𝑝𝑖 = 0

𝛻𝑢 𝑝𝑖 = −
1

Ω
 

𝑇∈Ω(𝑖)

𝛻|𝑇|

3
(𝑢 𝑝𝑗 + 𝑢(𝑝𝑘))



Optimal position

• Since 𝑢 = 𝑥2 + 𝑦2

𝑝𝑖
⋆ = −

1

Ω
 

𝑇∈Ω(𝑖)

𝛻 𝑇

6
( 𝑝𝑗

2
+ 𝑝𝑘

2)

If 𝑢 = 𝑥2 + 𝑦2 = 𝑥 2 → 𝑢 = 𝑥 − 𝑝𝑖
2, it does not change the

interpolation error, leading to the same optimal position. 

𝑝𝑖
⋆ = 𝑝𝑖 −

1

Ω
 

𝑇∈Ω(𝑖)

𝛻 𝑇

6
( 𝑝𝑗 − 𝑝𝑖

2
+ 𝑝𝑘 − 𝑝𝑖

2)



Weighted circumcenter

• Since  𝑇∈Ω(𝑖)
𝛻 𝑇

6
= 0, if 𝑝𝑗 − 𝑝𝑖

2
are equal, 

then 𝑝𝑖
⋆ = 𝑝𝑖.

• For the right case, the optimal position of 𝑝𝑖 is 
the circumcenter 𝑐 of ∆𝑝1𝑝2𝑝3.
𝑐
= 𝑝𝑖

−
1

Ω
 
𝛻 ∆𝑝1𝑝𝑖𝑝3

6
𝑝1 − 𝑝𝑖

2 + 𝑝3 − 𝑝𝑖
2

+
𝛻 ∆𝑝1𝑝2𝑝𝑖

6
𝑝1 − 𝑝𝑖

2 + 𝑝2 − 𝑝𝑖
2

𝑝𝑖
𝑐

𝑝1

𝑝2 𝑝3



Weighted circumcenter

• A special case: 𝑝𝑖 = 𝑝3
𝑐
= 𝑝3

−
1

∆𝑝1𝑝2𝑝3
 
𝛻 ∆𝑝1𝑝𝑖𝑝3

6
𝑝1 − 𝑝3

2

+
𝛻 ∆𝑝1𝑝2𝑝3

6
𝑝1 − 𝑝3

2 + 𝑝2 − 𝑝3
2 𝑐

𝑝1

𝑝2 𝑝𝑖(𝑝3)



Weighted circumcenter

• Taking the one-ring of 𝑝3

 

𝑇𝑗∈Ω(𝑝3)

𝑇𝑗 𝑐𝑗

=  

𝑇𝑗∈Ω(𝑝3)

𝑇𝑗 𝑝3

−  

𝑇𝑗∈Ω 𝑝3

 
𝛻 ∆𝑝1𝑝𝑖𝑝3

6
𝑝1 − 𝑝3

2 +
𝛻 ∆𝑝1𝑝2𝑝3

6
𝑝1 − 𝑝3

2 + 𝑝2 − 𝑝3
2



Centroidal Voronoi tessellations (CVT)

𝐸 = 

𝑖=1

𝑛

 

𝑉𝑖

𝑥 − 𝑝𝑖
2 𝑑𝑥

𝐸 = 

𝑖=1

𝑛

 

Ω(𝑝𝑖)

𝑥 − 𝑝𝑖
2 𝑑𝑥

CVT

CPT



Centroidal Patch Triangulation (CPT)

• Delaunay triangulation

• Moving 𝑝𝑖 to the centroid 𝑐𝑖 of the corresponding patch.

𝐸 = 

𝑖=1

𝑛

 

Ω(𝑝𝑖)

𝑥 − 𝑝𝑖
2 𝑑𝑥





Simulated annealing method with the operation “perturb-optimize”
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Metric

• A metric on a set 𝑋 is a function (called the distance function or 
simply distance)

𝑑: 𝑋 × 𝑋 → 0,∞

where 0,∞ is the set of non-negative real numbers. 

• For all 𝑥, 𝑦, 𝑧 ∈ 𝑋, the following conditions are satisfied:
 Non-negativity or separation axiom

𝑑 𝑥, 𝑦 ≥ 0

Identity of indiscernibles
𝑑 𝑥, 𝑦 = 0 ⟺ 𝑥 = 𝑦

Symmetry
𝑑 𝑥, 𝑦 = 𝑑 𝑦, 𝑥

Subadditivity or triangle inequality
𝑑 𝑥, 𝑧 ≤ 𝑑 𝑥, 𝑦 + 𝑑(𝑦, 𝑧)



Metric

• Conditions 1 and 2 together define a positive-definite function. 

• The first condition is implied by the others.

• In practice, the metric can be represented by a positive-definite 
symmetric 𝑚 ×𝑚 matrix 𝑀(𝑥).
• 𝑀 𝑥 = 𝑄 𝑥 𝑇𝑄(𝑥).

• Given a 𝑀(𝑥), its decomposition to 𝑄 𝑥 is non-unique.



Length

• Given the metric field 𝑀(𝑥) and an open curve 𝐶 ⊂ Ω, the length of 
𝐶 is defined as the integration of the length of tangent vector along 
the curve 𝐶 with metric 𝑀 𝑥

• The anisotropic distance 𝑑𝑀(𝑥, 𝑦) between two points 𝑥 and 𝑦 can be 
defined as the length of the (possibly non-unique) shortest curve 
(assuming line segment) that connects 𝑥 and 𝑦.

 

0

1

𝑥 − 𝑦 𝑇𝑀(𝑡𝑥 + 1 − 𝑡 𝑦)(𝑥 − 𝑦)𝑑𝑡



Anisotropic remeshing

• Input:
• Domain: Ω ∈ ℝ𝑑

• Metric field: 𝑴 𝒙 , 𝒙 ∈ Ω
• 𝑑 × 𝑑 positive-definite matrix

• Isotropic remeshing
• All edge lengths are as equal as possible.

• Anisotropic remeshing
• All edge lengths with metric are as equal as possible.



Input examples

Ω = 2D square, 
𝑀(𝑝) = Hessian of given 𝑢

Ω = 3D surface, 
𝑀(𝑝) = mesh curvature

Ω = 3D cube, 
𝑀(𝑝) = given tensor field

58



Anisotropic remeshing

• Eigen-decomposition: 𝑀 𝑥 = 𝑈(𝑥)𝛬𝑈(𝑥)𝑇

• Transformation Φ = 𝛬1/2𝑈(𝑥)𝑇

• The quality metrics are measured in the transformed space. 

Φ

transforms simplex to isotropic space



ODT properties [Chen 2004, Liu et al. 2013, Desbrun et al. 2013]

• 𝑢 𝒙 =
1

2
𝒙2 ⇒

𝑇𝑂𝐷𝑇 = Delaunay triangulation

• 𝑢 𝒙 convex ⇒

𝑇𝑂𝐷𝑇 = regular triangulation

power weight:  𝑤 𝒙 = 𝒙2 − 2 𝑢(𝒙)

min
𝑇

𝐸𝑂𝐷𝑇 ≜ 

𝜏∈Τ

 

𝜏

 𝑢 𝒙 − 𝑢 𝒙 𝑑𝒙



ODT method

Iterative mesh optimization:

• update vertices:  move each vertex to its power-weighted circumcenter

• update connectivity: compute constrained regular triangulation

𝑢 𝑥, 𝑦 = e
(𝑥2+𝑦2)

10

Ω = −5, 5 2

power weight:
𝑤 𝒙 = 𝒙2 − 2 𝑢(𝒙)



Thinking from optimization

min
𝑇

𝐸𝑂𝐷𝑇 ≜ 

𝜏∈Τ

 

𝜏

 𝑢 𝒙 − 𝑢 𝒙 𝑑𝒙

1. Update connectivity
2. Update vertex positions



ODT limitations

• 𝑴 must be Hessian of a global 𝑢

• 𝑢 must be convex

⇒ neither true for general 𝑴!



Locally Convex Triangulation (LCT)
Anisotropic Simplicial Meshing Using Local Convex Functions

Anisotropy approximated locally by per-simplex convex function: 

𝑢 𝒙 → 𝑢𝜏(𝒙).

𝑢𝜏 𝒙 ≜
1

2
𝒙𝑇𝐻𝜏𝒙 𝐸𝜏 ≜  

𝜏

 𝑢𝜏 − 𝑢𝜏 𝑑𝒙 𝐸𝜏 =
𝜏  𝑗<𝑘 𝒑𝑗 − 𝒑𝑘

𝑇
𝐻𝜏 𝒑𝑗 − 𝒑𝑘

2(𝑑 + 1)(𝑑 + 2)

Φ−1 squared edge length

𝐻𝜏

𝒑𝑗

𝒑𝑘

𝒑𝑗
′

𝒑𝑘
′

𝜏 𝜏−1

averaged metric



LCT Optimization
Input

domain + metric

Compute 𝐻𝜏

Update vertices

Update 
connectivity

anisotropic mesh

min
𝑇

𝐸𝐿𝐶𝑇 ≜ 

𝜏∈Τ

𝐸𝜏 = 

𝜏∈Τ

 

𝜏

 𝑢𝜏(𝑥) − 𝑢𝜏(𝑥) 𝑑𝒙

Step 1: compute 𝐻𝜏 on each simplex

Step 2: fix connectivity, update vertices

Step 3: fix vertices, update connectivity



Vertex update

restrict boundary/feature vertices

𝒑
𝒑0

𝒑1

Update each vertex 𝒑 in sequence:

• one-ring  𝜏𝑗 ∈ Ω 𝒑

• energy sum 𝐸𝒑 =  𝑗 𝐸𝜏𝑗

• gradient 𝒈 =  𝜕𝐸𝑝 𝜕𝒑

• Hessian 𝒉 = PD  𝜕2𝐸𝑝 𝜕𝒑2

• 𝒑∗ ≔ 𝒑− 𝛼 𝒉−1 𝒈

𝒑∗

𝒑5

𝜏𝑗

𝒑2

𝒑3

𝒑4



Connectivity update

𝒑0

𝒑1

𝒑2

𝒑3

𝒑0

𝒑1

𝒑2

𝒑3

𝐸before > 𝐸after

2-3

3-2

4-4

2-2

triangle mesh ⇒ edge flip

tetrahedral mesh ⇒ 2-3,
3-2, 4-4, 2-2 flips



Anisotropic meshing pipeline

Input:
domain + metric 

+ initial mesh
LCT optimization mesh refinement

Output:
anisotropic mesh



Edge refinement

𝑒

split collapse

• split if 𝑒−1 > 𝛽𝐿

• collapse if 𝑒−1 <  𝐿 𝛽

𝒑

𝒒

𝑒−1 ≈ 𝒑 − 𝒒 𝑇
𝑴(𝒑) +𝑴(𝒒)

2
𝒑 − 𝒒

 𝐿 𝛽 ≤ 𝑒−1 ≤ 𝛽𝐿

74



Geometric refinement

query distance

project & split



Sliver elimination (tetrahedral mesh)

sliver

flip 𝑒middle

• perturb vertices and perform flips to eliminate small dihedral angles 
[Tournois et al. 2009]

• perform 5-4 flips



Anisotropic meshing pipeline Input: 
domain + metric 

+ initial mesh

LCT Optimization

Mesh 
Refinement

Output:
anisotropic mesh



Lucy



Buddha



Partial-based method
Particle-Based Anisotropic Surface Meshing

• Considering each vertex as a particle, the potential energy between 
the particles determines the inter-particle forces. When the forces 
applied on each particle become equilibrium, the particles reach the 
optimal balanced state with uniform distribution.

• Energy:

𝐸 = 

𝑖=1

𝑛

 

𝑗≠𝑖

𝑛

𝐸𝑖𝑗

𝐸𝑖𝑗 = exp − 𝑥𝑖 − 𝑥𝑗
𝑇
𝑀𝑖𝑗 𝑥𝑖 − 𝑥𝑗 /4𝜎2



𝑸𝒊𝒋 𝒙𝒊 − 𝒙𝒋

𝟐𝝈𝟐
𝐞𝐱𝐩 −

𝒙𝒊 − 𝒙𝒋
𝑻
𝑴𝒊𝒋 𝒙𝒊 − 𝒙𝒋

𝟒𝝈𝟐







Repairing

Xiao-Ming Fu
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Problem Statement 

• Model repair is the process of removing artifacts from a geometric
model in order to generate an output model suitable for further 
processing by downstream applications that require certain quality 
guarantees for their input.

Hole filling



Application dependent

• Depends on the particular application scenario:
• what kind of “models” are considered, 

• what exactly constitutes an “artifact,”

• what is meant by “suitable for further processing”

Registered range scans from scanners

Triangle soups
from CAD models



One application

• The design cycle encountered in automotive CAD/CAM. 

• Models are typically manually designed in CAD systems that use trimmed NURBS 
surfaces as the underlying data structure for representing freeform surface geometry. 

• However, numerical fluid simulations for shape analysis and optimization cannot handle 
such NURBS patches directly but rather need a watertight, manifold triangle mesh as 
input. 

• Thus, there is a need for an intermediate stage that converts the NURBS model into a 
triangle mesh. 

• Unfortunately, this conversion process is prone to producing meshing artifacts that 
cannot be handled by simulation packages. 

• Thus, the converted model has to be repaired—usually in a tedious manual post-process, 
which often takes longer than the simulation itself.



Repairing Guidelines

• What is the upstream application? (trimmed NURBS surfaces)
• Determines characteristics and defects of input

• What is the downstream application? (manifold triangle meshes for FEM)
• Determines requirements on output

• Based on this information,
• is it necessary to repair the input?

• If repairing is necessary,
• is there an algorithm that does it directly?

• If direct repair is not possible,
• can several algorithms be used in sequence?

• If not,
• there is a gap in the state-of-the-art.
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Isolated Vertices and Dangling Edges



Singular Edges

• When more than two 
polygons share a common 
edge, then such an edge is 
said to be singular, complex, 
or nonmanifold.

• Detection
• count the number of incident 

triangles



Singular Vertices

• When a vertex is not manifold 
in the topology of the abstract 
simplicial complex, it is called a 
combinatorially singular vertex.

• Detection
• count the number of connected 

components in the 
neighborhood



Topological Noise

• Often, in these processes 
tiny handles or tunnels, 
which were not present 
in the original object, are 
introduced in the 
constructed digital 
model due to aliasing 
effects or noise in the 
discrete underlying data.



Orientation

• Polygons in an indexed face set 
are represented through 
sequences of vertex indices.

• This is typically achieved by 
selecting a seed face and by 
propagating the orientation to 
neighboring faces.

• Nevertheless, some 
configurations are intrinsically 
not orientable.



Surface Holes

• When digitizing a real-world 
object through standard 
laser range scanners, it is 
usual to encouter occluded 
parts which cannot be 
captured because the laser 
beam is shadowed by other 
parts of the object.

• A hole is an undesirably 
missing piece of surface 
within a triangulated patch.



Surfaces holes

• The boundary of a hole normally consists of one or more closed edge 
loops.

• Holes might represent larger areas of missing data.
• Challenge of conceiving a plausible geometry to fill the holes

• May contain so-called islands.



Gaps

• When designing a surface 
through standard CAD 
systems, the various 
tessellated patches are 
typically slightly displaced in a 
way that—though the 
intention of the designer was 
to construct a continuous 
surface—adjacent patches 
are separated by undesired 
gaps. 



Gaps

• A gap is defined as the empty region between two triangulated 
surface patches that should be continuously connected but are not 
due to the gap.

• The boundary of a gap, indeed, is typically made of two (or more) 
disconnected chains of edges.

• Quite narrow.



Degenerate Elements

• Degenerate triangles are 
triangles with zero area.

• These elements are the source of 
several problems for numerous 
applications, since many useful 
entities cannot be computed on 
such triangles (normal vectors, 
circumscribing circles, 
barycentric coordinates, etc).



Self-Intersections

• Self-intersecting meshes are 
typically generated 
• by tessellation of multipatch

CAD models, 
• by deformation of mesh 

models, 
• by composing models out of 

multiple parts without care, 
• or when merging patches 

reconstructed from partial 
scans of a 3D object.

• Due to the ambiguities, there 
is no common strategy to 
tackle this problem.



Sharp Feature Chamfering

• The sharp edges and corners 
of the original shape are 
removed by the sampling 
process and replaced by 
irregularly triangulated 
chamfers.

• Having such well-defined 
sharp features has clear 
advantages for both 
visualization and reverse 
engineering.



Data Noise

• Every digitization tool has a 
finite precision. 

• Thus, the acquired raw data 
of the sampled model 
contains additive noise from 
various sources.

• A main challenge is to 
remove the noise while 
preserving the main 
morphology of the 
underlying sampled surface.
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Upstream applications

• Determines characteristics and defects of input

• The origin of defects in a mesh: Nature and Approach 

• Nature of the data modeled
• (physical) real-world data

• (virtual) concepts

• Approach employed to convert such data into polygon meshes



Nature

• If a model is designed, the basic concept is typically an abstraction.

• Downstream applications may face problems such as 
nonmanifoldness, gaps, and intersections. 

• These defects are either caused by inaccuracies in modeling or 
produced by description processes that are often based on surface 
representations although solids are meant to be created.



Nature

• if the model is digitized, problems are mostly in the measured data.

• May include noise, holes, chamfered features, and topological noise 

• Due to limitations of the measurement process employed for 
digitization. 



Approach

• Such abstraction/data is converted into a polygon mesh (if not 
originally designed in polygonal form).

• The conversion itself can be the source of further flaws that depend 
on the specific approach used.
• For example, a CAD model, gaps and intersections might arise due to the 

necessarily occurring deviation of each triangulated patch from the original 
curved surface.

• Depending on the quality of the tessellation algorithm also (near-)degenerate 
polygons might be created.



Downstream applications

• Determines requirements on output

• Visualization
• only the existence of significant holes is generally deemed unacceptable; all 

other types of defects can often be neglected.

• To achieve pleasing renderings of a certain visual quality, however, also noise, 
gaps, and chamfered features can be adverse.



Downstream applications

• Modeling
• Connected surfaces without degeneracies are usually required.

• Intersections are often acceptable in the case of surface-based methods.

• Singularities and topological noise do not cause problems for some methods, 
others require or prefer clean manifold meshes.

• Rapid prototyping
• The mesh model naturally needs to be convertible to a solid model, that is, it 

has to well-define an interior and exterior volume

• So the mesh definitely has to be closed and free of intersections and singular 
non-manifold configurations that would prevent an unambiguous volume 
classification.



Downstream applications

• Geometry processing
• The input mesh is additionally required to be free of degeneracies and noise 

in order to allow for the computation of element properties and discrete 
differential quantities in a reasonable way. 

• Aliasing effects like topological noise and chamfered features negatively affect 
and disturb several of these methods.

• Simulation (FEM) of real-world phenomena on digital models
• The highest (all) requirements on the model’s quality in order to be able to 

achieve reliable results. 
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Registered range scans

• A set of patches (usually triangle meshes) that represent 
overlapping parts of the surface 𝑆 of a scanned object.

• The main geometric problem in this setup is the 
potentially very large overlap of the scans.
• a point 𝑥 on 𝑆 is often described by multiple patches

• Each patch has its own connectivity that is usually not 
compatible to the connectivity of the other patches.



Fused range scans

• Manifold meshes with boundaries (i.e., gaps, holes, and 
islands).

• Either these artifacts are due to obstructions in the line of 
sight of the scanner 

• Or they result from bad surface properties of the scanned 
model, such as transparency or glossiness.



Triangle soups

• Mere sets of triangles with little or no 
connectivity information.

• They most often arise in CAD models
• manually created in a boundary 

representation where users typically 
assemble predefined elements (taken 
from a library) without bothering about 
consistency constraints.

• Due to the manual layout, these 
models typically are made of only a few 
thousands triangles, but they may 
contain all kinds of artifacts.



Triangulated NURBS patches

• A set of connected triangle mesh patches that 
contain gaps and small overlaps along the 
boundaries of the patches.
• intersecting patches and inconsistent normal 

orientations. 

• These artifacts arise when triangulating two or 
more trimmed NURBS patches that join at a 
common boundary curve.

• Usually, each patch is triangulated separately; 
thus the common boundary is sampled 
differently from each side.



Contoured meshes

• Meshes have been extracted from a 
volumetric dataset by Marching Cubes, Dual 
Contouring, or other polygon mesh 
extraction algorithms.
• signed distance field

• These meshes often contain other 
topological artifacts, such as small spurious 
handles.

• Due to the finite resolution of the underlying 
grid, voxels are often classified incorrectly, 
leading to the so-called partial volume effect.



Badly meshed manifolds

• Degenerate elements such as triangles with 
zero area, caps (one inner angle close to 𝜋), 
needles (one edge length close to zero), and 
triangle flips (normal jump between 
adjacent faces close to 𝜋).

• From the tessellation of CAD models 
• Output of Marching Cubes

• in particular if they are enhanced by feature-
preserving techniques

• The degenerate shapes of the elements 
prevent further processing and lead to 
instabilities in numerical simulations.
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Surface-oriented algorithms

• operate directly on the input data and try to explicitly identify and 
resolve artifacts on the surface.

• only minimally perturb the input model and are able to preserve the 
polygonal mesh structure in areas that are not in the direct vicinity of 
artifacts.

• Gaps could be removed by snapping boundary elements (vertices and 
edges) onto each other or by stitching triangle strips in between the 
gap.

• Holes can be closed by filling in a triangulated patch that is optimal 
with respect to some surface quality functional. 

• Intersections could be located and resolved by explicitly splitting 
edges and triangles.



Surface-oriented algorithms (downside)

• To guarantee a valid output, surface-oriented repair algorithms 
usually require that the input model already satisfy certain quality 
requirements
• Often enough these requirements cannot be guaranteed nor even be checked 

automatically, so these algorithms are rarely fully automatic but instead need 
user interaction and manual post-processing.

• Due to numerical inaccuracies, certain types of artifacts (like 
intersections or large overlaps) cannot be resolved robustly.

• Other artifacts, like gaps between two separate solids that are 
geometrically close to each other, cannot even be identified.



Consistent Normal Orientation

• Consistently orienting the normals of an input model is part of most 
surface-oriented repair algorithms 

• Can even improve the performance of volumetric algorithms.

• Usually the orientation of the normals is propagated along a 
minimum spanning tree between neighboring patches.



Surface-Based Hole Filling

• Describe an algorithm for computing a smooth triangulation of a hole.

• First, the holes are identified and filled by a coarse triangulation.

• These patches are then refined such that their vertex densities and 
average edge lengths match those of the mesh surrounding the holes. 

• Finally, the patch is smoothed so as to blend with the geometry of the 
surrounding mesh.



Surface-Based Hole Filling

• This algorithm reliably fills holes in models with smooth patches.

• The density of the vertices matches that of the surrounding surface.

• does not check or avoid geometric self-intersections 

• does not detect or incorporate islands into the filling patch



Conversion to Manifolds

• All complex edges and singular vertices are identified by counting the 
number of adjacent faces.

• The input is then cut along these complex edges into separate 
manifold patches.

• Finally, pairs of matching edges (i.e., edges that have geometrically 
the same endpoints) are identified and merged, if possible, in a 
topologically consistent manner.

• This, however, is done efficiently and robustly.



Gap Closing

• Typical for triangulated NURBS models.

• For each pair of boundary edges, the area between the two edges 
normalized by the edge lengths is computed. 

• This score measures the geometric error that would be introduced by 
merging the two edges. 

• Pairs of boundary edges are then iteratively merged in order of 
increasing score.



Gap Closing

• Usually easy to implement

• If the input data is well behaved and the user parameters are chosen 
in accordance with the error that was accepted during triangulation, 
they manage to produce satisfying results.

• However, there are no guarantees on the quality of the output. 

• Allows the user to override the decisions towards the expected result.



Topology Simplification

• Detects and resolves all handles up to a given size 𝜀 in a manifold 
triangle mesh.

• Handles are removed by cutting the input along a non-separating 
closed path and sealing the two resulting holes by triangle patches



Topology Simplification

• Detection
• Dijkstra’s algorithm on the dual graph from a seed triangle

• When two different loops touch along a common, a handle is detected

• To detect all handles of the input mesh, one has to perform the region 
growing for every triangle.

• Downside
• cannot guarantee that no geometric self-intersections are created after a handle is 

removed.



Volumetric algorithms

• Convert the input model into an intermediate volumetric representation 
from which the output model is then extracted.
• fully automatic and produce guaranteed watertight models

• A volumetric representation can be any kind of partitioning of the 
embedding space into cells such that each cell can be classified as being 
inside, outside, or intersected by the surface.

• Volumetric representations: regular Cartesian grids, adaptive octrees, kd-
trees, BSP-trees, and Delaunay triangulations.

• Do not allow for artifacts like intersections, holes, gaps, overlaps, or 
inconsistent normal orientations.

• Often also guarantee the absence of complex edges and singular vertices

• Spurious handles, however, might still be present.



Volumetric algorithms (downside)

• The conversion to and from a volume leads to a resampling of the model
• Introduces aliasing artifacts and loss of model features

• destroys any structure that might have been present in the connectivity of the input 
model. 

• The number of triangles in the output of a volumetric algorithm is usually 
much higher than that of the input model
• thus has to be decimated in a post-processing step.

• The quality of the output triangles often degrades and has to be improved 
afterwards.

• Volumetric representations are quite memory-intensive so it is hard to run 
them at very high resolutions.



Volumetric Repair on Adaptive Grids

• The algorithm first creates an adaptive octree representation of the 
input model where each cell stores the triangles intersecting with it.
• Cells that are not yet on maximum depth are recursively split if they either 

contain a boundary edge or if the triangles within the cell deviate too much 
from a common regression plane.

• From these triangles a feature-sensitive sample point can be computed for 
each cell. 

• Then, a sequence of morphological operations is applied to the octree 
to determine the topology of the model. 

• Finally, the connectivity and geometry of the reconstruction are 
derived from the octree structure and samples, respectively.
• A Dual Contouring



Volumetric Repair on Adaptive Grids
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Existing work



• Bijective Parameterization with Free Boundaries.

• Simplicial Complex Augmentation Framework for Bijective 

Maps.

• Efficient Bijective Parameterizations
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Bijective Parameterization with Free Boundaries

Jason Smith, Scott Schaefer



min 𝐸𝐷 + 𝐸𝐵

𝐸𝐵 = max 0,
𝜀

𝑑𝑖𝑠𝑡 𝑈1, 𝑈2, 𝑈𝑖
− 1

2

Barrier function

distortion barrier

𝜀

𝑈1

𝑈2
𝑈𝑖



➢Distance is not C2.

➢Hessian of barrier function is difficult to compute.

➢Convex-concave decomposition is not easy. 

𝑈1 𝑈2

𝑈𝑖

𝑈1 𝑈2

𝑈𝑖

𝑈1 𝑈2

𝑈𝑖

Definition of distance



Simplicial Complex Augmentation Framework 

for Bijective Maps

Zhongshi Jiang, Scott Schaefer, Daniele Panozzo



min 𝐸𝑀+𝐸𝑆

scaffold

mesh
Fix boundary

Locally injective

Scaffold structure



min 𝐸𝑀+𝐸𝑆

Hessian’s sparse structure changes

Solving sparse equations

• Symbolic phase (nonzero structure)

• Numerical phase (value)

• Solve phase (value)

(0.071)

(0.012)

Remesh



Remesh



Efficient Bijective Parameterizations

Jian-Ping Su , Chunyang Ye, Ligang Liu, Xiao-Ming Fu



Fixed nonzero structure

min 𝐸𝐷 + 𝐸𝐵

𝐸𝐵 = max 0,
𝜀

𝑑𝑖𝑠𝑡 𝑈1, 𝑈2, 𝑈𝑖
− 1

2

distortion barrier

𝜀

𝑈1

𝑈2
𝑈𝑖



each boundary edge and any boundary vertex

Hessian is dense

Hessian’s sparse structure is fixed

B_N: the number of boundary vertices 

High density of matrix 



Coarse shell

C_N: the number of cage boundary vertices 

C_N<<B_N

Hessian is sparse



Coarse shell



➢Distance is not C2.

➢Hessian of barrier function is difficult to compute.

➢Convex-concave decomposition is not easy. 

𝑈1 𝑈2

𝑈𝑖

𝑈1 𝑈2

𝑈𝑖

𝑈1 𝑈2

𝑈𝑖

Distance in [Smith et al. 2015]



𝑑𝑖𝑠𝑡 𝑈1, 𝑈2, 𝑈𝑖 = 𝑈1𝑈𝑖 + 𝑈2𝑈𝑖 − 𝑈1𝑈2

convex concave

Distance based on triangle inequality

➢ Infinitely differentiable.

➢Analytical second order approximation.

𝐸𝐵 = max 0,
𝜀

𝑑𝑖𝑠𝑡 𝑈1, 𝑈2, 𝑈𝑖
− 1

2

𝑓 =
𝜀

𝑔
− 1

2

, 𝑔 = 𝑑𝑖𝑠𝑡 𝑈1, 𝑈2, 𝑈𝑖convex



Tutte

initialization
Shell



Result



Result



Result

running time

rations

per iteration 

running time 

rations

energy
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(i) Mesh denoising

(ii) Mesh Deformation

(iii) Mesh parameterization

(iv) Mesh Interpolation

(v) Mesh Simplification

Geometric Optimization



Preliminary



Jacobian Matrix

𝜙𝑖(𝒙) = 𝐴𝑖𝒙 + 𝒃𝑖



Jacobian Matrix

𝐽𝑖 =

𝜕𝑢

𝜕𝑥

𝜕𝑢

𝜕𝑦
𝜕𝑣

𝜕𝑥

𝜕𝑣

𝜕𝑦

= 𝐴𝑖

𝐴𝑖 =
𝑢1 − 𝑢0 𝑢2 − 𝑢0
𝑣1 − 𝑣0 𝑣2 − 𝑣0

𝑥1 − 𝑥0 𝑥2 − 𝑥0
𝑦1 − 𝑦0 𝑦2 − 𝑦0

−1

𝑢
𝑣

= 𝐴𝑖
𝑥
𝑦 + 𝛿𝑖

𝑥0, 𝑦0

𝑥1, 𝑦1

𝑥2, 𝑦2

𝑢0, 𝑣0

𝑢1, 𝑣1

𝑢2, 𝑣2

𝜙𝑖(𝑥, 𝑦) = 𝐴𝑖
𝑥
𝑦 + 𝛿𝑖



Jacobian Matrix

𝐽𝑖 =

𝜕𝑢

𝜕𝑥

𝜕𝑢

𝜕𝑦
𝜕𝑣

𝜕𝑥

𝜕𝑣

𝜕𝑦

= 𝐴𝑖

𝐽𝑖 =
𝑢1 − 𝑢0 𝑢2 − 𝑢0
𝑣1 − 𝑣0 𝑣2 − 𝑣0

𝑥1 − 𝑥0 𝑥2 − 𝑥0
𝑦1 − 𝑦0 𝑦2 − 𝑦0

−1

𝑢
𝑣

= 𝐴𝑖
𝑥
𝑦 + 𝛿𝑖

𝑥0, 𝑦0

𝑥1, 𝑦1

𝑥2, 𝑦2

𝑢0, 𝑣0

𝑢1, 𝑣1

𝑢2, 𝑣2

𝜙𝑖(𝑥, 𝑦) = 𝐴𝑖
𝑥
𝑦 + 𝛿𝑖



Jacobian Matrix

𝐽𝑖 =
𝑢1 − 𝑢0 𝑢2 − 𝑢0
𝑣1 − 𝑣0 𝑣2 − 𝑣0

𝑥1 − 𝑥0 𝑥2 − 𝑥0
𝑦1 − 𝑦0 𝑦2 − 𝑦0

−1

𝐽𝑖
𝑇 =

𝑥1 − 𝑥0 𝑦1 − 𝑦0
𝑥2 − 𝑥0 𝑦2 − 𝑦0

−1 𝑢1 − 𝑢0 𝑣1 − 𝑣0
𝑢2 − 𝑢0 𝑣2 − 𝑣0

𝐽𝑖
𝑇 =

1

2 𝑡𝑗

𝑦2 − 𝑦0 𝑦0 − 𝑦1
𝑥0 − 𝑥2 𝑥1 − 𝑥0

𝑢1 − 𝑢0 𝑣1 − 𝑣0
𝑢2 − 𝑢0 𝑣2 − 𝑣0

𝑎
𝑏
𝑐
𝑑

=
1

2 𝑡𝑖

𝑦1 − 𝑦2 𝑦2 − 𝑦0 𝑦0 − 𝑦1
𝑥2 − 𝑥1 𝑥0 − 𝑥2 𝑥1 − 𝑥0

𝑦1 − 𝑦2 𝑦2 − 𝑦0 𝑦0 − 𝑦1
𝑥2 − 𝑥1 𝑥0 − 𝑥2 𝑥1 − 𝑥0

𝑢0
𝑢1
𝑢2
𝑣0
𝑣1
𝑣2



Singular Value 

𝐽𝑇𝐽 =
𝑎 𝑐
𝑏 𝑑

𝑎 𝑏
𝑐 𝑑

= 𝑎2 + 𝑐2 𝑎𝑏 + 𝑐𝑑
𝑎𝑏 + 𝑐𝑑 𝑏2 + 𝑑2

𝑎′ =
𝑎+𝑑

2
, 𝑐′ =

𝑎−𝑑

2
, 𝑏′ =

𝑐−𝑏

2
, 𝑑′ =

𝑐+𝑏

2

Σ = 𝑎′2 + 𝑏′2 + 𝑐′2 + 𝑑′2,  𝜎 = 𝑎′2 + 𝑏′2 − 𝑐′2 + 𝑑′2

𝐽 𝐹
2 = 𝑎2 + 𝑏2 + 𝑐2 + 𝑑2 = 𝑡𝑟 𝐽𝑇𝐽 = Σ2 + 𝜎2

The arithmetic square root of non-negative eigenvalues of  𝐽𝑇𝐽



Distortion Measure

• Dirichlet

• ARAP

• Symmetric Dirichlet

• Conformal

𝑓DRCH x =෍

𝑖

𝐽𝑖 𝐹
2 𝑡𝑖 =෍

𝑖

Σ𝑖
2 + 𝜎𝑖

2 𝑡𝑖

𝑓ARAP x =෍

𝑖

𝐽𝑖 − 𝑅 𝐽𝑖 x 𝐹

2
𝑡𝑖 =෍

𝑖

Σ𝑖 − 1 2 + 𝜎𝑖 − 1 2 𝑡𝑖

𝑓ISO x =෍

𝑖

𝐽𝑖 𝐹
2 + 𝐽𝑖 𝐹

−2 𝑡𝑖 =෍

𝑖

Σ𝑖
2 + Σ𝑖

−2 + 𝜎𝑖
2 + 𝜎𝑖

−2 𝑡𝑖

𝑓CONF x =෍

𝑖

Σ𝑖
𝜎𝑖

2

𝑡𝑖



Laplace Matrix

𝑓DRCH x =෍

𝑖

𝐽𝑖 𝐹
2 𝑡𝑖 =෍

𝑖

Σ𝑖
2 + 𝜎𝑖

2 𝑡𝑖

Laplace Matrix is Hessian of 𝑓DRCH x

𝐿 = 𝑇T𝑇𝐽 = 𝑇x 𝑓DRCH x = xT𝑇T𝑇x

𝑎
𝑏
𝑐
𝑑

=
1

2 𝑡𝑖

𝑦1 − 𝑦2 𝑦2 − 𝑦0 𝑦0 − 𝑦1
𝑥2 − 𝑥1 𝑥0 − 𝑥2 𝑥1 − 𝑥0

𝑦1 − 𝑦2 𝑦2 − 𝑦0 𝑦0 − 𝑦1
𝑥2 − 𝑥1 𝑥0 − 𝑥2 𝑥1 − 𝑥0

𝑢0
𝑢1
𝑢2
𝑣0
𝑣1
𝑣2



Problem

min
x

𝑓 x =෍

𝑖

𝑡𝑖 𝒟 𝐽𝑖 x

1.Initial point：

2.Descent direction：

3.Step size：

4.Update：

x0，𝑛 = 0

min
𝑝

𝑓 x𝑛 + 𝑝

min
𝛼

𝑓 x𝑛 + 𝛼𝑝

x𝑛+1 = x𝑛 + 𝛼𝑝，𝑛 = 𝑛 + 1



Method

• First-order methods build descent steps by preconditioning the gradient with a 

fixed proxy matrix, which often suffer from slower convergence as lacking of 

higher-order information.

• Newton-type methods uses the energy Hessian,          , to form a proxy matrix, 

which can achieve the most rapid convergence but require the costly assembly, 

factorization and backsolve of new linear systems per iterate.

min
𝑝

𝑓 x𝑛 + 𝑝

𝑓 x𝑛 + 𝑝 ≈ 𝑓 x𝑛 + 𝛻𝑓 x𝑛
𝑇𝑝 +

1

2
𝑝𝑇𝐻𝑝

𝐻𝑝 = −𝛻𝑓 x𝑛

𝛻2𝑓 x



First-order method
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Accelerated Quadratic Proxy for Geometric 
Optimization

Shahar Kovalsky Meirav Galun

Yaron Lipman



Motivation

locally approximating the energy with a function whose Hessian is Laplacian.

ill-conditioning dominated by a Laplacian-like term in energy. 

𝑓 x = ℎ x + 𝑔 x

ℎ x =
1

2
x𝑇𝐻x

𝑓 𝑥𝑛−1 + 𝑝 = ℎ 𝑥𝑛−1 + 𝑝 + 𝑔 𝑥𝑛−1 + 𝑝

𝐻 𝑥𝑛−1 + 𝑝 + 𝛻𝑔 𝑥𝑛−1 = 0

𝐻𝑝 = −𝐻𝑥𝑛−1 − 𝛻𝑔 𝑥𝑛−1 = −𝛻𝑓 𝑥𝑛−1

𝑓 𝑥𝑛−1 + 𝑝 ≈ ℎ 𝑥𝑛−1 + 𝑝 + 𝑔 𝑥𝑛−1 + 𝛻𝑔 𝑥𝑛−1
𝑇𝑝



Motivation

correctly balancing the information from its two last iterations.

𝑦𝑛 = 1 + 𝜃 𝑥𝑛−1 − 𝜃𝑥𝑛−2

𝑓 x = ℎ x + 𝑔 x

ℎ x =
1

2
x𝑇𝐻x

𝑓 y𝑛 + 𝑝 = ℎ y𝑛 + 𝑝 + 𝑔 y𝑛 + 𝑝

𝐻 y𝑛 + 𝑝 + 𝛻𝑔 y𝑛 = 0

𝐻𝑝 = −𝐻y𝑛 − 𝛻𝑔 y𝑛 = −𝛻𝑓 y𝑛

𝑓 y𝑛 + 𝑝 ≈ ℎ y𝑛 + 𝑝 + 𝑔 y𝑛 + 𝛻𝑔 y𝑛
𝑇𝑝



Method

𝑓 x = ℎ x + 𝑔 x

ℎ x =
1

2
x𝑇𝐻x

𝑓 y𝑛 + 𝑝 = ℎ y𝑛 + 𝑝 + 𝑔 y𝑛 + 𝑝

𝐻 y𝑛 + 𝑝 + 𝛻𝑔 y𝑛 = 0

𝐻𝑝 = −𝐻y𝑛 − 𝛻𝑔 y𝑛 = −𝛻𝑓 y𝑛

𝑓 y𝑛 + 𝑝 ≈ ℎ y𝑛 + 𝑝 + 𝑔 y𝑛 + 𝛻𝑔 y𝑛
𝑇𝑝



Results



Results



Results



Limitation

𝑓 x = ℎ x + 𝑔 x

ℎ x =
1

2
x𝑇𝐻x

𝑓ARAP x =
1

2
x𝑇𝐻x −෍

𝑖

𝐽𝑖 ∗ 𝑡𝑖 + 𝑐0

𝑓ISO x =
1

2
x𝑇𝐻x +෍

𝑖

𝐽𝑖 𝐹
−2 𝑡𝑖

𝑓CONF x =
1

2
x𝑇𝐻x +෍

𝑖

𝐽𝑖 𝐹
2

1

𝜎𝑖
2 − 1 𝑡𝑖

efficiency of Laplacian 

approximation for an 

arbitrary energy



Video



Scalable Locally Injective Mappings

Michael Rabinovich Roi Poranne Olga Sorkine-HornungDaniele Panozzo



Motivation

𝑓ARAP x =෍

𝑖

Σ𝑖 − 1 2 + 𝜎𝑖 − 1 2 𝑡𝑖



Motivation

𝑓ISO x =෍

𝑖

Σ𝑖
2 + Σ𝑖

−2 + 𝜎𝑖
2 + 𝜎𝑖

−2 𝑡𝑖



Motivation

𝑓ARAP x =෍

𝑖

Σ𝑖 − 1 2 + 𝜎𝑖 − 1 2 𝑡𝑖 𝑓ISO x =෍

𝑖

Σ𝑖
2 + Σ𝑖

−2 + 𝜎𝑖
2 + 𝜎𝑖

−2 𝑡𝑖

Generalize Local/Global



Local-Global Optimization

• Majorizer:

• Matching gradient:

• Closest minimizer:

𝒟 𝐽𝑖 x = 𝐽𝑖 x − 𝑅 𝐽𝑖 x 𝐹

2

𝐽𝑖
𝑛 = 𝐽𝑖 x𝑛−1 = 𝑈𝑆𝑉𝑇 , 𝑅𝑖

𝑛= 𝑅 𝐽𝑖
𝑛 = 𝑈𝑉𝑇Local

x𝑛 = min
x

෍

𝑖

𝐽𝑖 x − 𝑅𝑖
𝑛

𝐹

2
𝑡𝑖Global

𝑃 𝑅𝑖
𝑛
𝐽 = 𝐽 − 𝑅𝑖

𝑛
𝐹

2

𝑃𝑅𝑖
𝑛
𝐽 ≥ 𝒟 𝐽 ∀𝐽

𝛻𝐽𝑃
𝑅𝑖
𝑛
𝐽𝑖
𝑛 = 𝛻𝐽𝒟 𝐽𝑖

𝑛

min
𝐽

𝑃 𝑅𝑖
𝑛
𝐽 = Proj 𝐽𝑖

𝑛

𝒟 𝐽 = 𝐽 − 𝑅 𝐽 𝐹
2 ARAPARAP Proxy



Generalize Local/Global 

• Majorizer:

• Matching gradient:

• Closest minimizer:

𝑃𝑅𝑖
𝑛
𝐽 ≥ 𝒟 𝐽 ∀𝐽

𝛻𝐽𝑃
𝑅𝑖
𝑛
𝐽𝑖
𝑛 = 𝛻𝐽𝒟 𝐽𝑖

𝑛

min
𝐽

𝑃 𝑅𝑖
𝑛
𝐽 = Proj 𝐽𝑖

𝑛

𝐽𝑖
𝑛 = 𝐽𝑖 x𝑛−1 = 𝑈𝑆𝑉𝑇 , 𝑅𝑖

𝑛= 𝑅 𝐽𝑖
𝑛 = 𝑈𝑉𝑇

𝑃𝑤
𝑅 𝐽 = 𝑊 𝐽 − 𝑅 𝐹

2 𝑅 = 𝑅𝑖
𝑛

𝛻𝐽 𝑊 𝐽 − 𝑅 𝐹
2 = 𝛻𝐽𝒟 𝐽

𝛻𝐽tr 𝑊
𝑇𝑊 𝐽 − 𝑅 𝐽 − 𝑅 𝑇 = 𝑊𝑇𝑊 +𝑊𝑊𝑇 𝐽 − 𝑅 = 𝛻𝐽𝒟 𝐽

𝑊 =
1

2
𝛻𝐽𝒟 𝐽 𝐽 − 𝑅 −1

Τ1 2
𝒟 𝐽 = 𝐽 − 𝑅 𝐽 𝐹

2

𝛻𝐽𝒟 𝐽 = 2 𝐽 − 𝑅

𝑊 = 𝐼



Generalize Local/Global 

𝑊 =
1

2
𝛻𝐽𝒟 𝐽 𝐽 − 𝑅 −1

Τ1 2

𝑆 =
𝜎1 0
0 𝜎2

𝐽 = 𝑈𝑆𝑉𝑇

𝒟 𝐽 = 𝒟 𝑆 𝛻𝐽𝒟 𝐽 = 𝑈𝛻𝑆𝒟 𝑆 𝑉𝑇

𝑊 =
1

2
𝑈𝛻𝑆𝒟 𝑆 𝑉𝑇𝑉 𝑆 − 𝐼 −1𝑈𝑇

Τ1 2

𝐽 − 𝑅 −1 = 𝑈𝑆𝑉𝑇 − 𝑈𝑉𝑇
−1

= 𝑈 𝑆 − 𝐼 𝑉𝑇
−1

= 𝑉 𝑆 − 𝐼 −1𝑈𝑇

𝑊 = 𝑈
1

2
𝛻𝑆𝒟 𝑆 𝑆 − 𝐼 −1

Τ1 2

𝑈𝑇 = 𝑈𝑆𝑊𝑈
𝑇



Generalize Local/Global 

𝑊 = 𝑈
1

2
𝛻𝑆𝒟 𝑆 𝑆 − 𝐼 −1

Τ1 2

𝑈𝑇 = 𝑈𝑆𝑊𝑈
𝑇

𝒟 𝐽 = 𝐽 𝐹
2 + 𝐽 𝐹

−2 = 𝜎1
2 + 𝜎1

−2 + 𝜎2
2 + 𝜎2

−2

𝛻𝑆𝒟 𝑆 =
2 𝜎1 + 𝜎1

−3 0

0 2 𝜎2 + 𝜎2
−3

𝑆 =
𝜎1 0
0 𝜎2

𝑆𝑊 =

𝜎1 + 𝜎1
−3

𝜎1 − 1
0

0
𝜎2 + 𝜎2

−3

𝜎2 − 1



Generalize Local/Global 



Result



Result



Result



Result



Blended Cured Quasi-Newton for Distortion 
Optimization

YuFeng Zhu Robert Bridson Danny Kaufman



Motivation

• First-order methods build descent steps by preconditioning the gradient with a 

fixed proxy matrix, which often suffer from slower convergence as lacking of 

higher-order information.

• Newton-type methods uses the energy Hessian,          , to form a proxy matrix, 

which can achieve the most rapid convergence but require the costly assembly, 

factorization and backsolve of new linear systems per iterate.

min
𝑝

𝑓 x𝑛 + 𝑝

𝑓 x𝑛 + 𝑝 ≈ 𝑓 x𝑛 + 𝛻𝑓 x𝑛
𝑇𝑝 +

1

2
𝑝𝑇𝐻𝑝

𝐻𝑝 = −𝛻𝑓 x𝑛

𝛻2𝑓 x



Quasi-Newton Methods 

𝑓 x ≈ 𝑓 x𝑛+1 + 𝛻𝑓 x𝑛+1
𝑇 x − x𝑛+1 +

1

2
x − x𝑛+1

𝑇𝐻𝑛+1 x − x𝑛+1

𝛻𝑓 x𝑛+1 + 𝐻𝑛+1 x𝑛 − x𝑛+1 = 𝛻𝑓 x𝑛

𝐻𝑛+1 x𝑛+1 − x𝑛 = 𝛻𝑓 x𝑛+1 − 𝛻𝑓 x𝑛

𝐻𝑛+1𝑠𝑛 = y𝑛 𝑠𝑛 = 𝐷𝑛+1y𝑛

𝑝𝑛+1 = −𝐷𝑛+1𝛻𝑓 x𝑛+1

𝐷𝑛+1 = 𝑄𝑁 𝑧, 𝐷𝑛 = 𝑉 𝑧 𝑇𝐷𝑛𝑉 𝑧 +
𝑠𝑛𝑠𝑛

𝑇

𝑠𝑛
𝑇𝑧

, 𝑉 𝑧 = 𝐼 −
𝑧𝑠𝑛

𝑇

𝑠𝑛
𝑇𝑧

𝐷𝑛+1 = 𝑄𝑁 y𝑛, 𝐷𝑛

secant equation

𝑠𝑛 = 𝑄𝑁 z, 𝐷𝑛 z

z: The difference in gradients 



Quasi-Newton Methods 

Quasi-Newton methods lie 

in between two methods. They 

employ sequential gradients to 

update approximations of the 

system Hessian, per descent 

iterate. However, the secant 

approximation can implicitly 

create a dense proxy, unlike 

the sparse true Hessian, direct 

and incorrect coupling distant 

vertices.



Blended Quasi-Newton 

• The difference in gradients would be the better behaved     than   , which may 

introduce spurious coupling or have badly scaled entries near distorted triangles

• However, to achieve the superlinear convergence BFGS offers, near solutions we 

wish to come closer to satisfying the secant equation, and so aim to move towards 

using    instead.

𝑦

𝐷𝑛+1 = 𝑄𝑁 𝐿𝑠𝑛 , 𝐷𝑛

𝐿𝑠

𝑧𝑛 = 1 − 𝛽𝑛 𝑦𝑛 + 𝛽𝑛𝐿𝑠𝑛

𝐷𝑛+1 = 𝑄𝑁 𝑧𝑛, 𝐷𝑛

𝑦

𝛽𝑛 = min
𝛽∈ 0,1

𝑦𝑛 − 𝛽𝐿𝑠𝑛
2, 𝛽𝑛 = proj 0,1

y𝑛
𝑇𝐿𝑠𝑛
𝐿𝑠𝑛

2



Result



Second-order method



Paper List

• Geometric Optimization via Composite Majorization

• Piecewise Linear Mapping Optimization Based on The 

Complex View

• Progressive Parameterizations



Geometric Optimization via Composite 
Majorization

Anna Shtengel Roi Poranne Olga Sorkine-Hornung Shahar Kovalsky Yaron Lipman



Motivation

min
x

𝑓 x =෍

𝑖

𝑡𝑖 𝒟 𝐽𝑖 x

1.Initial point：

2.Descent direction：

3.Step size：

4.Update：

x0，𝑛 = 0

min
𝛼

𝑓 x𝑛 + 𝛼𝑝

x𝑛+1 = x𝑛 + 𝛼𝑝，𝑛 = 𝑛 + 1

𝐻𝑝 = −𝛻𝑓 𝑥𝑛
analytic and simple to evaluate 

convex approximate Hessian 𝐻



Method

𝑓 x𝑛 + 𝑝 ≈ 𝑓 x𝑛 + 𝛻𝑓 x𝑛
𝑇𝑝 +

1

2
𝑝𝑇𝐻𝑝

𝐻 = 𝛻2𝑓

is a local convex majorizer of 𝑓𝑓

𝑓 x =෍

𝑖

ℎ𝑖 𝒈𝑖 x =෍

𝑖

ℎ𝑖 ∘ 𝒈𝑖 x

ℎ𝑖 ∶ 𝑅
𝑘 ⟶𝑅, ℎ𝑖 = ℎ𝑖

+ + ℎ𝑖
_

𝒈𝑖 ∶ 𝑅
𝑛 ⟶ 𝑅𝑘 , 𝒈𝑖 = 𝒈𝑖

+ + 𝒈𝑖
_



Method

𝑟 = 𝑟+ + 𝑟−

𝑟 x; x0 = 𝑟+ x + 𝑟− x0 + 𝛻𝑟− x0 x − x0

𝑟 x; x0 = 𝑟− x + 𝑟+ x0 + 𝛻𝑟+ x0 x − x0

𝑓 x = ℎ 𝒈 x = ℎ 𝑔1 x , ⋯ , 𝑔𝑘 x

𝒖0 = 𝒈 x0 𝑠𝑗 𝒖 = sign
𝜕ℎ

𝜕𝑢𝑗
𝒖; 𝒖0

𝑔𝑗 x; x0 = ቐ
𝑔
𝑗
x; x0 𝑠𝑗 𝒖0 > 0

𝑔𝑗 x; x0 𝑠𝑗 𝒖0 < 0

𝑓 x; x0 = ℎ 𝒈 x; x0 ; 𝒖0

convex majorizer

concave minorizer



Method

𝑓 x; x0 = ℎ 𝒈 x; x0 ; 𝒖0

is convex majorier𝑓

𝛻x
2𝑓 x; x0 =

𝜕 𝒈 𝑇

𝜕x
𝛻2ℎ+

𝜕 𝒈

𝜕x
+෍

𝑗

𝜕ℎ

𝜕𝑢𝑗
൝
𝛻2𝑔𝑗

+ 𝑠𝑗 𝒖0 > 0

𝛻2𝑔𝑗
− 𝑠𝑗 𝒖0 < 0

𝑓 x; x0 = ℎ 𝒈 x; x0 ; 𝒖0 ≥ ℎ 𝒈 x ; 𝒖0 ≥ ℎ 𝒈 x

𝐻 = ቚ𝛻2𝑓 x; x0
x=x0



Result



Result



Björn Golla Hans-Peter Seidel Renjie Chen 

Piecewise linear mapping optimization based 
on the complex view



Real view

𝜙𝑖(𝑥, 𝑦) = 𝐴𝑖
𝑥
𝑦 + 𝛿𝑖

𝑥0, 𝑦0

𝑥1, 𝑦1

𝑥2, 𝑦2

𝑢0, 𝑣0

𝑢1, 𝑣1

𝑢2, 𝑣2
𝐽𝑖 =

𝜕𝑢

𝜕𝑥

𝜕𝑢

𝜕𝑦
𝜕𝑣

𝜕𝑥

𝜕𝑣

𝜕𝑦

= 𝐴𝑖

𝐽𝑖 =
𝑢1 − 𝑢0 𝑢2 − 𝑢0
𝑣1 − 𝑣0 𝑣2 − 𝑣0

𝑥1 − 𝑥0 𝑥2 − 𝑥0
𝑦1 − 𝑦0 𝑦2 − 𝑦0

−1

𝑢
𝑣

= 𝐴𝑖
𝑥
𝑦 + 𝑐𝑖



Complex view

𝑧0

𝑧1

𝑧2

𝑤0

𝑤1

𝑤2

𝜙𝑖 𝑧, 𝑧 = 𝛼𝑧 + 𝛽𝑧 + 𝛿𝑖

𝑥 =
𝑧 + 𝑧

2
，𝑦 =

𝑧 − 𝑧

2𝑖

𝑎 + 𝑑

2
+ 𝑖

𝑐 − 𝑏

2
𝑧 +

𝑎 − 𝑑

2
+ 𝑖

𝑐 + 𝑏

2
𝑧

𝛼 =
𝑎 + 𝑑

2
+ 𝑖

𝑐 − 𝑏

2
, 𝛽 =

𝑎 − 𝑑

2
+ 𝑖

𝑐 + 𝑏

2

𝑎 𝑏
𝑐 𝑑

𝑥
𝑦

𝑎𝑥 + 𝑏𝑦 + 𝑖 𝑐𝑥 + 𝑑𝑦

𝑧 = 𝑥 + 𝑖𝑦，𝑧 = 𝑥 − 𝑖𝑦

Σ = 𝛼 + 𝛽 , 𝜎 = 𝛼 − 𝛽



Complex view

𝑧0

𝑧1

𝑧2

𝑤0

𝑤1

𝑤2

𝜙𝑖 𝑧, 𝑧 = 𝛼𝑧 + 𝛽𝑧 + 𝛿𝑖

𝑧0 𝑧0 1

𝑧1 𝑧1 1

𝑧2 𝑧2 1

𝛼
𝛽
𝛿

=

𝑤0

𝑤1
𝑤2

𝛼
𝛽 =

𝑧1 − 𝑧0 𝑧1 − 𝑧0
𝑧2 − 𝑧0 𝑧2 − 𝑧0

−1
𝑤1 − 𝑤0

𝑤2 − 𝑤0

𝛼
𝛽 =

𝑖

4 𝑡𝑖

𝑧2 − 𝑧0 𝑧0 − 𝑧1
𝑧0 − 𝑧2 𝑧1 − 𝑧0

𝑤1 − 𝑤0

𝑤2 − 𝑤0

𝛼
𝛽 =

𝑖

4 𝑡𝑖

𝑧1 − 𝑧2 𝑧2 − 𝑧0 𝑧0 − 𝑧1
𝑧2 − 𝑧1 𝑧0 − 𝑧2 𝑧1 − 𝑧0

𝑤0

𝑤1
𝑤2



Complex view

𝑧0

𝑧1

𝑧2

𝑤0

𝑤1

𝑤2

𝜙𝑖 𝑧, 𝑧 = 𝛼𝑧 + 𝛽𝑧 + 𝛿𝑖

𝛼
𝛽 =

𝑖

4 𝑡𝑖

𝑧1 − 𝑧2 𝑧2 − 𝑧0 𝑧0 − 𝑧1
𝑧2 − 𝑧1 𝑧0 − 𝑧2 𝑧1 − 𝑧0

𝑤0

𝑤1
𝑤2

𝑒0 = 𝑧1 − 𝑧2，𝑒1 = 𝑧2 − 𝑧0，𝑒2 = 𝑧0 − 𝑧1

𝛼 =
𝑖

4 𝑡𝑖
𝑒0 𝑒1 𝑒2 𝑊

𝛽 = −
𝑖

4 𝑡𝑖
𝑒0 𝑒1 𝑒2 𝑊

𝐷 =
𝑖

4 𝑡𝑖
𝑒0 𝑒1 𝑒2

𝛼 = 𝐷𝑊，𝛽 = 𝐷𝑊



Complex view

𝑧0

𝑧1

𝑧2

𝑤0

𝑤1

𝑤2

𝜙𝑖 𝑧, 𝑧 = 𝛼𝑧 + 𝛽𝑧 + 𝛿𝑖 𝛼 = 𝐷𝑊，𝛽 = 𝐷𝑊

𝛼 =
Re 𝛼

Im 𝛼
2×1

，𝑊 =
Re 𝑊

Im 𝑊
6×1

𝐷 =
Re 𝐷 −Im 𝐷

Im 𝐷 Re 𝐷
2×6



Method

𝐸 = Σ𝑖
2 + 𝜎𝑖

2 + Σ𝑖
−2 + 𝜎𝑖

−2

𝜉1 = 𝛻𝑟𝐸，𝜉2 = 𝛻𝑠𝐸

𝜂1 = 𝛻𝑟
2𝐸，𝜂2 = 𝛻𝑠

2𝐸，𝜂3 = 𝛻𝑟𝛻𝑠𝐸
𝛼 = 𝐷𝑊，𝛽 = 𝐷𝑊

𝐻6×6 = 𝛻2𝐸 = 𝑀𝑇𝐾𝑀

𝑀4×6 =
𝐷

𝐷
，𝐾 =

2𝜉1𝐼 + 4𝜂1𝛼𝛼
𝑇 4𝜂3𝛼𝛽

𝑇

4𝜂3𝛽𝛼
𝑇 𝜉2𝐼 + 4𝜂2𝛽𝛽

𝑇

= Σ𝑖
2 + 𝜎𝑖

2 1 +
1

Σ𝑖
2𝜎𝑖

2

= 𝑟 + 𝑠 1 + 𝑟 − 𝑠 −2

Σ = 𝛼 + 𝛽 , 𝜎 = 𝛼 − 𝛽

𝑟 = 𝛼 2，𝑠 = 𝛽 2



Method

𝐻6×6 = 𝛻2𝐸 = 𝑀𝑇𝐾𝑀

𝑀4×6 = 𝑅4×4𝑄 4×6

R is lower triangular matrix, Q is orthonormal

𝐻 = 𝑄𝑇 𝑅𝑇𝐾𝑅 𝑄

The         PSD projection of H is therefore equivalent to the        PSD 

projection of         , since Q is orthonormal. 

6 × 6 4 × 4

𝑅𝑇𝐾𝑅



Result



Result



Progressive Parameterizations 

Ligang Liu Xiao-Ming FuChunyang Ye Ruiqi Ni



Motivation

𝜙𝑖(𝒙) = 𝐽𝑖𝒙 + 𝒃𝑖

𝑓𝑖
𝑟 𝑓𝑖

𝑝

Reference 𝑀𝑟: A set of 

individual triangles
Parameterized mesh 𝑀𝑝

Exsiting methods choose the 

triangles 𝑓𝑖 of input mesh 𝑀
as reference triangles. The 

energy is numerically 

difficult to optimize, leading 

to numerous iterations and 

high computational cost.



Motivation

𝜙𝑖(𝒙) = 𝐽𝑖𝒙 + 𝒃𝑖

𝑓𝑖
𝑟 𝑓𝑖

𝑝

If 𝐷 𝑓𝑖
𝑟 , 𝑓𝑖

𝑝
≤ 𝐾, ∀𝑖, only a few 

iterations in the optimization of 
𝐸 𝑀𝑟 ,𝑀𝑝 are necessary.

Goal: find a triangle between 𝑓𝑖
and 𝑓𝑖

𝑝
as the reference 𝑓𝑖

𝑟 that 

satisfies 𝐷 𝑓𝑖
𝑟 , 𝑓𝑖

𝑝
≤ 𝐾.

𝐸 𝑀𝑟 , 𝑀𝑝

#iter

Two iterations



New reference triangles

• Exponential function : 
𝐽𝑖 𝑡 = 𝑈𝑖diag(𝜎𝑖

𝑡, 𝜏𝑖
𝑡)𝑉𝑖

𝑇

where 𝐽𝑖 = 𝑈𝑖diag(𝜎𝑖 , 𝜏𝑖)𝑉𝑖
𝑇

• Bounded distortion:

𝐷 𝑓𝑖
𝑟 , 𝑓𝑖

𝑝
=
1

4
𝜎𝑖
2𝑡 + 𝜎𝑖

−2𝑡 + 𝜏𝑖
2𝑡 + 𝜏𝑖

−2𝑡 ≤ 𝐾

It is strictly increasing w.r.t 𝑡.

• Maximize the guidance of reference triangle: 
1

4
𝜎𝑖
2𝑡𝑖 + 𝜎𝑖

−2𝑡𝑖 + 𝜏𝑖
2𝑡𝑖 + 𝜏𝑖

−2𝑡𝑖 = 𝐾

Newton-Raphson method

𝜙𝑖(𝒙) = 𝐽𝑖𝒙 + 𝒃𝑖

𝑓𝑖
𝑝
∈ 𝑀𝑝

𝑓𝑖 ∈ 𝑀 𝐽𝑖(𝑡)

𝑓𝑖
𝑟 ∈ 𝑀𝑟





Our algorithm – Progressive parameterization

Input: a 3D 

triangular mesh 

+ initialization

Construct new 

references

Update 

Parameterization

Final 

Optimization

Output 2D 

parameterization



Hybrid solver

• SLIM [Rabinovich et al. 2017]
• A reweighting scheme

• Pros: effectively penalize the maximum distortion

• Cons: a poor convergence rate

• CM [Shtengel et al. 2017]

• Pros: converge quickly

• Cons: cannot reduce large distortion quickly

• Hybrid 

• First perform SLIM solver

• Then use the CM solver



Result
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