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Me

® Name: Xiao-Ming Fu, {#=%Hf]
& Office: Room 1207, Management and Research Building

® Email: fuxm@ustc.edu.cn

& Personal website: http://staff.ustc.edu.cn/~fuxm/
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http://staff.ustc.edu.cn/~fuxm/

Goal

& Basic knowledge about polygon mesh processing

& Basic coding training



Reference

& Book: Polygon Mesh Processing

& Paper: http://kesen.realtimerendering.com/

® Other related papers and books


http://kesen.realtimerendering.com/

Score

& Coding:
® 14 tasks: 5 X 14 =70

& Code presentation: 10
® Quiz: 10
® Exam: 10

® Total score: 70 + 10 + 10 + 10 =



Homework

& http://staff.ustc.edu.cn/~fuxm/

® http://staff.ustc.edu.cn/~fuxm/course/2020 Spring DGP/index.html

® Email: fire fuxm@aqqg.com

& Coding: 1EMVZw 5 W =5 .zip
& For example: HW1_ Xiaoming_Fu SA16001062.zip


http://staff.ustc.edu.cn/~fuxm/
http://staff.ustc.edu.cn/~fuxm/course/2020_Spring_DGP/index.html
mailto:fire_fuxm@qq.com

Representations
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& Obj, Off
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Point cloud

o ey gy 3
P = {p11 "'JPNV}’ P = 8 M=

Zj 3D scanners
A set of data points in some coordinate system

"




Applications - scanners

® Reverse engineering




Applications - scanners

& Digital preservation of cultural heritage sites and objects




Depth camera

& Depth camera: Kinect, RealSense, IPhone X, ......

REALSENSE




Depth camera

Ambient light sensor Speaker

True Depth Camera

Proximity sensor Microphone

Flood llluminator 7MP camera

Infrared camera Dot projector




Depth Image

Gray image: pixel represents distance from camera. Real capture by Kinect.
Nearer is brighter. Nearer is darker.



4 Point cloud
& Signed distance field

& Implicit function
< Grid

& Pixel, Voxel
& Quad-tree, Octree

® Mesh
& Triangle, Tetrahedron

& Data structure
¢ Halfedge

& File format
& Obj, Off

Outline



Signed distance field

& The distance of a given point x from
the boundary of ():
_\i=ai(r, 6ROy ifx € Q
[0S {d(x, ), ifxe€ Qe

Contour line




Truncated signed distance field (TSDF)

® Less memory than SDF
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Implicit function

¢ Singed distance field is also an implicit function.



Implicit function

® Surface reconstruction

Sample points
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Grid

Image

®

® Voxel

® Quad mesh

® All-Hex mesh



Adaptive grid - hierarchical octree

3D case



Partitioning rule

® The commonly-used octant partitioning depends on:
& (1) the existence of the shape inside the octant

& (2) the partitioning is performed until the max tree depth is reached.




Patch-based octree

'

(a) 4th-level (b) 5th-level (c) 6th-level (d) 7th-level (e) all non-empty leaf nodes

The partitioning rule of the octree is:
For any octant O which is not at the max depth level, subdivide it if the local

surface Sy restricted by it is not empty and the Hausdorff distance dy (Sy, Pp)
larger than a predefined threshold.



Patch-based quadtree
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4 Point cloud
& Signed distance field

& Implicit function
< Grid

& Pixel, Voxel
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® Mesh
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& File format
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Outline



Triangle Mesh

& A collection of triangles

& without any particular mathematical structure
& Each triangle: a segment of a piecewise linear surface representation
& Geometric component

¢ Discrete vertices: V = {vy, ..., Uy, }
& Topological component

& Triangle: F = {f3, ---;fNF}
& Edge: E = {eq, ..., ey, }



Xi
Pi = (yi> € R3
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F= {pl' ""pNv}
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triangle mesh qguad mesh



Homework 1

® Shortest path
& Input: two vertices
& Output: a edge path connecting the input two vertices with shortest length

& How about the geodesic path?

¢ Minimal spanning tree
& Input: some (>2) vertices

& Output: a tree passing through all input vertices with minimum length



P: a set of vertices

1. For each pair of terminal points v, € P and v, € P, compute the
shortest path C, 5 between v, and v, on .
2. Construct a complete graph with the node set P. The weight of

each edge v,V 1s equal to the length of C, 5.
. Construct an MST for this shortest distance graph.
4. All mesh edges 1n the shortest paths that correspond to edges in
the MST form an approximate Steiner tree for .

s




2-manifold

Non-manifold vertex is generated by pinching two surface Non-manifold edge has more
sheets together at that vertex such that the vertex is incident | than two incident triangles.
to more than one fan of triangles.



Fuler formula

QNV_NE_I_NF:Z(]‘_g)

& The numbers of vertices Ny, edges Ng, and faces Ny in a closed and mesh.

& Nz ~ 2Ny, Ni ~ 3Ny,
& 1face, 1.5 edge - Ny = 1.5N



Barycentric coordinate

g=ag;+p9; +v9
a+pf+y=1,
a,f,y = 0.

Si

a-—
Si i Sj - & Sk
s;: area of the green triangle g;
g

k



Tetrahedra

MO,
VA, W KO
0 \ 8
A=,
S
’ Vaii‘v‘;\w,.v‘,
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Vi
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K}

One tetrahedron A collection of tetrahedrons



Data structure — requirements

& Given f;, find its containing vertices in
order.

& Given v;, find its one-ring facets in
order.

¢ Given v;, find its outgoing edges.
& Given v;, find its adjacent vertices.
& Given ey, find its connected two facets.

& Given f; and ey, find another facet
which connects ey,.




Halfedge

& Split each edge into two oriented halfedges.

& Halfedges are oriented consistently in counterclockwise
order around each face and along each boundary.

& One halfedge corresponds one face.

® Boundary edge: empty face.
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Halfedge

& Each halfedge:
& the vertex it points to,
& its adjacent face,
& the next halfedge of the face or boundary,
& the previous halfedge in the face,

& its opposite (or inverse) halfedge.

® Each vertex:
& Position

& One outgoing halfedge

® Each face:

& One referenced halfedge




Vertices of one facet

o e
s s s

One halfedge of f; Next halfedge Next halfedge







Implementation thinking

® Code: halfedge data implementation
& structure

& std::vector



Outline

4 Point cloud

& Signed distance field
& Implicit function

® Mesh

& Triangle, Tetrahedron

® Grid
& Pixel, Voxel

& Quad-tree, Octree

® Data structure
& Halfedge

® File format
& Obj, Off



File format — obj
https://en.wikipedia.org/wiki/Wavefront .obj file

# List of geometric vertices, with (x,y,z) coordinates

v 0.123 0.234 0.345

# List of texture coordinates, in (u, v) coordinates

vt 0.500 1

# List of vertex normals in (x,y,z) form

vn 0.707 0.000 0.707

# Polygonal face element (see below)

f6/4/13/5/37/6/5 (f vl/vtl/vnl v2/vt2/vn2 v3/vt3/vn3) from 1



File format — off
http://people.sc.fsu.edu/~jburkardt/data/off/off.html

OFF #line 1

vertex_count face_count edge count #Lline 2

XYz #0One line for each vertex

nvlv2...Vn One line for each polygonal face, from 0



Off - example

OFF

860

-0.500000 -0.500000 0.500000
0.500000 -0.500000 0.500000
-0.500000 0.500000 0.500000
0.500000 0.500000 0.500000
-0.500000 0.500000 -0.500000
0.500000 0.500000 -0.500000
-0.500000 -0.500000 -0.500000
0.500000 -0.500000 -0.500000
40132

42354

44576

46710

41753

46024




Discrete differential geometry

Xiao-Ming Fu



Goal

 Compute approximations of the differential properties of this
underlying surface directly from the mesh data.

* Local Averaging Region

* Normal Vectors

* Gradients

* Laplace-Beltrami Operator
* Discrete Curvature



Local Averaging Region

* General idea: spatial averages over a local
neighborhood (x) of a point x.

e X: one mesh vertex

* U(x): n-ring neighborhoods of mesh vertex
or local geodesic balls.

* The size of the Q(x): stability and accuracy
e Large size: smooth
* Small size: accurate for clean mesh data



Local Averaging Region

Barycentric cell Voronoi cell Mixed Voronoi cell

triangle barycenters triangle barycenters circumcenter for obtuse

edge midpoints triangle circumcenter triangles — edge midpoints



Implementation thinking

 How to compute the area of local average region? For example,
barycentric cell.

* One simple idea: for each vertex, compute the area directly.
* Any improvement?

* How about Voronoi cell and mixed Voronoi cell?



Normal Vectors

* Normal vectors for individual triangles are well-defined.

* Vertex normal: spatial averages of normal vectors in a local one-ring
neighborhood.
Lreaw) arn(T)

|Zreaq) arn(M],

n(v) =

1. constant weights: ar = 1
2. triangle area: ap = area(T)
3. incident triangle angles: ar = 6(T)



Implementation thinking

* How to compute the normal on triangles or vertices?



Barycentric coordinate

g=ag;+p9; + v«

a+pf+y=1,
a,f,y=0.
_Si+Sj+Sk

s;: area of the green triangle




Gradients

* Given the function value on vertices, compute the gradient
on each triangle.
* A piecewise linear function

f(x) =afi+Bf; +vfk

* Gradient:
fo(.X') = fiVxa + ijx:B + fiVay f:
* Because | !
Xy — X; Y
(=) 2 =
_ Ai - k T2
T Ay 247

=(x—x;) - (2, — xj)l/ZAT



Gradients

* Then

L
Vea = (xkz;? )l
V.5 = (x; Z—A?;k)
oy = 2

—x)" (- x)*t




Gradients

* Because: | |
(2 —x;) + @y —x)t + (x; —x;) =0

xl-)l

fo(x) = (fj — fl)

(x; — x5)" (xj —
2

i+ (e 5

e Consistent with the formula in the book.




Gradient

* Constant on each facet.

e Different in different facets
e the signal is CY

* No definition on vertices.

* If the signal is the positions of the vertices,
what does the gradient mean?



Implementation thinking

e Simple question:

1.
How to compute (xk — xj) in 3D?

* How about the gradient in tetrahedral mesh?



Laplace-Beltrami Operator
Paper: Discrete Laplace operators: No free lunch

* A= —div grad on a smooth surface S
* (NULL): Af = 0 whenever f is constant.

* (SYM) Symmetry: (Af,g),;2 = (f,Ag),;>
* (LOC) Local support: for any pair p # q of points, Af (p) is independent of f (q).
* (LIN) Linear precision: Af = 0 whenever S € R and f is linear.

* (MAX) Maximum principle: harmonic functions have no local maxima at interior
points.

* (PSD) Positive semi-definiteness: the Dirichlet energy Ep(f) = f |lgrad f|| dA =
(Af, f),2 is non-negative.



Discrete Laplace-Beltrami Operator
Paper: Discrete Laplace operators: No free lunch

* Discrete Laplace operators on triangular surface meshes span the
entire spectrum of geometry processing applications:

* mesh filtering, parameterization, pose transfer, segmentation, reconstruction,
re-meshing, compression, simulation, and interpolation via barycentric
coordinates.

* Constant gradient on facet — zero Laplace value on facet

* Exists on the vertex
* A discrete Laplace operator on vertex-based functions:

Af)i= ) oy (y—fi

JEQ()



Desired Properties for Discrete Laplace-
Beltrami Operator

* Require a discrete Laplacian having properties corresponding to (some
subset of) the properties of the continuous Laplace operator:

e NULL
 Af = 0 whenever f is constant.

e SYM (SYMMETRY)
* Condition: w;; = wj;
* Real symmetric matrices exhibit real eigenvalues and orthogonal eigenvectors.

 LOC (LOCALITY )

* Condition: Weights are associated to mesh edges, w;; = 0 if vertex i and j do not share an
edge.

* Smooth Laplacians govern diffusion processes via u; = —Af.
* LIN (LINEAR PRECISION)
* (Lf); = 0 for all interior vertices when the positions of vertices are in the plane.
* Condition: 0 = (Lx); = % w;;(x; — x;)
* Applications: de-noising, parameterizations, plate bending energies.



Desired Properties for Discrete Laplace-
Beltrami Operator

* POS (POSITIVE WEIGHTS )
* Condition: w;; > 0 wheneveri # j.
A sufficient condition for a discrete maximum principle.

* |n diffusion problems, this property assures that flow travels from regions of
higher to regions of lower potential.

* Establishes a connection to barycentric coordinates.
e Tutte’s embedding theorem: LOCALITY + LINEAR PRECISION + POSITIVE
WEIGHTS.

* PSD (POSITIVE SEMI-DEFINITENESS)
* Condition: L is symmetric positive semi-definite.
* Discrete Dirichlet energy Ep(f) = 2; ; a)ij(fi — f])z
e SYMMETRY + POSITIVE WEIGHTS — POSITIVE SEMI-DEFINITENESS
e POSITIVE SEMI-DEFINITENESS » POSITIVE WEIGHTS



Uniform Laplacian

o =1 _ 1
a)l-j— ora)ij—ﬁ

1
(Lf)i = Zjeawy(fj — fi) or (Lf); = EZjeQ(i)(fj — fi)
* Violate property of LINEAR PRECISION

* The definition only depends on the connectivity of the mesh.

* The uniform Laplacian does not adapt at all to the spatial distribution
of vertices.



Cotangent Formula

* mixed finite element/finite volume method
 Assume it constant on each vertex

fAfdA:fdivadAz (V) -nds
A; A;

[ aAi

A; is the local averaging domain of vertex i.
dA; is the boundary of A;.

n is the outward pointing unit normal of the boundary.

XN N =

f is the signal defined on mesh.




Cotangent Formula

We split this integral by considering the integration
separately for each triangle T.

j Vf-nds =Vf-(a—b)* =1|7f-(xj—xk)l
dA;NT 2

Vf is constant within each triangle.
N 1
(x; — x) (xj — xi)
2

7f = (i = )=+ e = )5

(x; — x3)" - (xj — xk)l

LAinTVf nds = (fj N fi) 4A 1

(=) (=)'
44,

+(fic — f:




Cotangent Formula

* Because:
1
Ap = Esm)’f”xj — x| [l — x|
= > sinyll; — 2l [l — x|
and
cosyj = (% — %) - (% — x)
e — [ | % — x|
(x; — xp) - (x5 — xp)
COSYy =

12, — x| % — x|




Cotangent Formula

e and K
(x; — xk)j: ' (xj — xk)l = (x; — xy) - (xj — xk)
(= x:)" - (x5 — %) = (x5 — ;) - (x5 — )

So

f Vi -nds
0A;NT

1
=5 (COth(fj —~ fi) + coty; (fi — fi))




Cotangent Formula

|

f AfdA = > z (cota;; + cotf;)(f; — fi)
A JEQ)

Discrete average of the Laplace-Beltrami operator of a

function f at vertex v; is given as:

Af (v;) = 21141_ j;i)(cotaij + cotBi;)(fj — fi)

1. most widely used discretization

2. (cota;; + cotfs;;) become negative if a;; + B;; > m.
Violate the property of POSITIVE WEIGHTS.




No free lunch

* Main result Not all meshes admit Laplacians satisfying properties
(SYMMETRY), (LOCALITY), (LINEAR PRECISION), and (POSITIVE
WEIGHTS) simultaneously.



Implementation thinking

 How to compute the cotangent formula?
* One simple idea: for each edge, compute the related cot value.

* Any improvement? More efficient?



Discrete Curvature

* When applied to the coordinate function x, the Laplace-Beltrami
operator provides a discrete approximation of the mean curvature
normal.

Ax = —2Hn
absolute discrete mean curvature at vertex i:
1
H; = - ||Ax
= 11Ax]]

* A discrete operator for Gaussian curvature:

1

JEQ(D)




Implementation thinking

* How to compute the discrete Gaussian curvature?
* One simple idea: for each vertex, compute the related angle.

* Any improvement? More efficient?



Second homework

* Color bar
* Map a value to a color

* Visualize:
* mean curvature,
e absolute mean curvature,
e and Gaussian curvature.



Mesh Smoothing

Xiao-Ming Fu



Denolsing

* Removing the noise (the
high frequencies) and
keeping the overall shape
(the low frequencies)

* Physical scanning process

 Feature VS Noise




Smoothing — From wiKki

* In statistics and image processing, to smooth a data set is to
create an approximating function that attempts to capture
important patterns in the data, while leaving out noise or
other fine-scale structures/rapid phenomena.

* In smoothing, the data points of a signal are modified so
individual points (presumably because of noise) are reduced,
and points that are lower than the adjacent points are
increased leading to a smoother signal.



Outline

* Filter-based methods
e Optimization-based methods

e Data-driven methods



Outline

* Filter-based methods
e Optimization-based methods

e Data-driven methods



Laplacian smoothing

* Diffusion flow: a mathematically well-understood model for the time-
dependent process of smoothing a given signal f(x, t).
* Heat diffusion, Brownian motion

* Diffusion equation:

of (x,t) _
Py AAf (x, t)

1. A second-order linear partial differential equation;

2. Smooth an arbitrary function f on a manifold surface by using
Laplace-Beltrami Operator.

3. Discretize the equation both in space and time.




Spatial discretization

* Sample values at the mesh vertices f(t) = (f (v, t), ..., f (v, t) )T

 Discrete Laplace-Beltrami using either the uniform or cotangent
formula.

* The evolution of the function value of each vertex:

af(vil t) .
5~ M ()
Matrix form:
A A-Lf(t)

ot



Temporal discretization

* Uniform sampling: (¢t,t + h,t + 2h, ...)
* Explicit Euler integration:

fle+m) = O +h 2D = £ + - Lf)

1. Numerically stability: a sufficiently small time step h.

* Implicit Euler integration:
f(t+h)=f({t)+hA-Lf(t+h)
S A—-hA-L)f(t+h) =f(t)



Laplacian smoothing

* Arbitrary function = vertex positions
° f — (xl, ...,xn)T

* Laplacian smoothing:
X <—xi+h/1-Axl-

1. Ax = —2Hn — vertices move along the normal direction by an
amount determined by the mean curvature H.

2. mean curvature flow.



Figure 4.5. Curvature flow smoothing of the bunny mesh (left), showing the
result after ten iterations (center) and 100 iterations (right). The color coding
shows the mean curvature. (Model courtesy of the Stanford Computer Graphics

Laboratory.)



Different Laplace-Beltrami operators

* Cotangent Laplacian.
* the movement in the normal direction is true.

e Uniform Laplacian
* move each vertex to the barycenter of its one-ring neighbors.
* smooths the mesh geometry and a tangential relaxation of the triangulation.

Input Uniform Cotangent



Fairing

* Goal: compute shapes
that are as smooth as
possible

* Steady-states of the
flow:
e Lx=0
e [*x =0

Figure 4.8. The blue region is determined by minimizing a fairness functional:
membrane surface (Ax = 0, left), thin-plate surface (A*x = 0, center), and
minimum variation surface (A*x = 0, right). The order k of the Euler-Lagrange

equation A*x = 0 determines the maximum smoothness C*~! at the boundary.
(Image taken from [Botsch and Kobbelt 04a]. (©2004 ACM, Inc. Included here

by permission.)




Gaussian Image Denolsing

* The Gaussian filter for an image pixel I(p), at coordinate p = (x, y),
is defined as:

1(p)<—— z Ws(lp — qlD1(q)

P qeQ(p)
1. Q(p): neighborhood of p.

2. W;: position similarity between p and q, Gaussian function with
standard deviations oy

3. K, is the normalization term, the summation of weights.
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Additive Gaussian Noise




Bilateral Image Denoising

* The bilateral filter for an image pixel I(p), at coordinate p = (x,y), is
defined as:

I(p)<—— > Wellp - bW (1@ — 1(@)IDI(q)

P qeQ(p)
1. Q(p): neighborhood of p.

2. W, and W,.: monotonically decreasing weighting functions and often
be Gaussian functions, with standard deviations o and g,..

3. W;: position similarity between p and q.
4. W,.. color similarity between p and q.
5. K, is the normalization term, the summation of weights.



Bilateral Image Denoising

* non-linear
* edge-preserving
* noise-reducing smoothing

 Extended to mesh case!!!



Bilateral Mesh Denoising
Paper: Bilateral Mesh Denoising

 Vertex positions cannot simply be
considered as the signal to be processed.

* Filtering a mesh using local neighborhoods. n

* Main idea: local parameter space for every
vertex using the tangent plane. qi

* The heights of vertices over the tangent plane
< gray-level values of an image.

e Update v:
VW =v+d-n

Once n is given, we need to compute the
new d to update v.




Pseudo-code

Denoise_Point(Vertex v, Normal n)
{q;} = Q(v), N: number of neighbor vertices, dgm, K, = 0
forit:=1to N
t = [[v—gqll .
d=(nv-—gq;
ws = exp(—t*/(205))
w, = exp(—d?/(20;))
Asuym += Ws - W, - d
K, += wg - w,

end
return V"% = v 4+ n - dgym /Ky



Detalil

* Normal: weighted average of the normals
* 1-ring neighborhood of the vertex.
* k-ring neighborhood for extremely noisy data.
* weight: the area of the triangles.

* Mesh shrinkage: volume preservation technique.
* Scale the updated mesh to preserve the volume.
 How to compute the volume?

* Boundary.

* Parameters: o, g,-,, number of iterations.



Figure 5: Results of denoising the Fandisk model. On the left 1s the
input noisy model, in the middle 1s the results of [Jones et al. 2003],
and on the right 1s our result.



Bilateral Normal Filtering
Paper: Bilateral Normal Filtering for Mesh Denoising

* The normals on facets are well-defined.
* Considers normals as a surface signal defined over the original mesh.

* A novel bilateral normal filter that depends on both spatial distance
and signal distance.

* Recover vertex positions in global and non-iterative manner.



Bilateral Normal Filtering

n() = Y AWi(lec— oW (InGD —n(5)]) - n0h)
P rielri
n(f;): the normal of facet f;.
c;: the center of facet f;.

Q(f;): the neighbor facets of f;.

WS( C; — ch): spatial distance.

W, (||n(f) — n(f])H) normal difference.
Aj: the area of facet f;.

N L RN W NN




Mesh Denoising

* Given the normal on each facet, determine the vertex positions to
match the normal as much as possible.

e Local and Iterative Scheme

e update the normal field.
e update the vertex positions.

 Global and Non-Ilterative Scheme
* Energy minimization.



Local and lterative Scheme

* Normal Updating*
T Zf,emn)A Ws W -1y

. Normallze the new normal after each
iteration.

* Multiple iterations: increase the influence
from a 1-ring neighborhood to a wider
region, leading to a smoother mesh.

e [teration number: user controls.



Local and lterative Scheme

Vertex Updating:
T =0
nf - (x —x;) =

ing - (x, —x) =0
ng - (x;—x,) =0

Energy:

E = ZZ nl - (x; - xl)

fr LIEfk

Linear system.



Local and lterative Scheme

Each time, fix other vertex, update one vertex
(Gauss—Seidel iteration).

1
XV = x; + z n-(nj - (¢;—xy))
l

1. No need to determine a suitable step size.

2. Not computationally expensive. No need to
solve a linear system.

3. Iteration number: user control.




Global and Non-lterative Scheme

* Energy minimization:
E(n) =(1—-A)E+AE,

Fe= ) AdlUn™)|

l
Fa= ) Adlni® = i1
l

1. L: Uniform weighting or cotangent weighting.
Z. A:a parameter to balance the E and E,.



VLA 4

Fig. 1: Our mesh denoising schemes based on bilateral normal filtering produce better results than the state-of-the-art methods at challenging
regions with sharp features or irregular surface sampling. From left to right: an input CAD-like model with random subdivision, denoising
results with bilateral mesh filtering (vertex-based) [1], unilateral normal filtering [2], probabilistic smoothing [3], prescribed mean curvature
flow [4], our local, iterative scheme, and our global, non-iterative scheme. All the meshes in the paper are flat-shaded to show faceting.




Manifold Harmonics
Paper: Spectral Geometry Processing with Manifold Harmonics

e 1D Fourier Transform:

F(w) = J+Oof(x)e_2”iwxdx

flx) = f+ooF(w)eZ”i“’xda)

spatial domain f(x) <& frequency domain F(w)



1D Fourier Transform

* An intuitive geometric interpretation of f(x):
* an element of a certain vector space

+00 —
(f.9) =, g (x)dx
e g(x) = e, (x): = e?™@* = cos(Lnwx) + i - sin(2mwx)
* e, (x): frequency-related orthogonal basis

¢ F(0) = [TF(x), e (%)) €4 () d

* It describes how much of the basis function e, (x) is contained in f(x).

* Low-pass filter:
* cutting off all frequencies above a user-defined threshold w,,, 4

c FO) = [10 N (2), €0 (1)) € (1) de



Manifold Harmonics

* How to generalize the 1D Fourier Transform to 2-manifold
surface?

* sine and cosine functions < eigenfunctions of the Laplace
operator
* Aey, (x) = —(2rw)? e (x)
* Definition of eigenfunctions of the Laplace operator:
* Ae; = A;e;, similar to the eigenvector of a matrix

* Choose eigenfunctions of the Laplace-Beltrami operator on
2-manifold surfaces as generalized basis functions.



Manifold Harmonics

* Discrete Laplace-Beltrami operator: L
* Symmetry, uniform or cotangent

* Eigenfunctions become the eigenvectors of L

* an eigenvector can be considered a discrete sampling of a
continuous eigenfunction on each vertex.

* natural vibrations: eigenvectors of L
* natural frequencies: eigenvalues of L

e L: symmetry and positive semi-definite
* its eigenvectors build an orthogonal basis
* For each vector f = (fy, ..., )T f = X1 (f, e;)e;



Manifold Harmonics

* Low-pass filter:
o f=X"{f e)e; wherem < n.
* Replace f with vertex coordinates.




Other filters

Figure 5: Low-pass, enhancement and band-exaggeration filters. The filter can be changed by the user, the surface is updated
interactively.



Discussion

 Computationally expensive

e eigenvector and eigenvalue
e Paper: Fast Approximation of Laplace-Beltrami Eigenproblems, SGP 2018

* A very useful representation of triangle mesh:
* 3D printing
* Reduced-Order Shape Optimization Using Offset Surfaces, SIGGRAPH 2015

* Non-Linear Shape Optimization Using Local Subspace Projections,
SIGGRAPH 2016

* Face modeling
* Use small m to represent the basic shape
* Use Laplacian coordinate to represent the details



Outline

* Filter-based methods
* Optimization-based methods

e Data-driven methods



Prior

* The model consists of flat regions.

LS
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Ly smoothing
Paper: Mesh denoising via Ly minimization

*The method maximizes the flat regions of
the model and gradually removes noise
while preserving sharp features.



Ly minimization for images
Paper: Image smoothing via Ly gradient minimization




Ly minimization for images
Paper: Image smoothing via Ly gradient minimization

* Energy:
lc — c*|* + |Vc|,

e c: a vector of pixel colors

 ¢*: original image colors

e I/c: a vector of gradients of these colors
* |Vc|y: Ly norm of Vc

Difficult to solve!



Optimization method

 Auxiliary variables 9:
mi(sn lc — c*|* + B|Vc — 6|% + A|6],
c,

* Alternating optimization:
* 1. Fix ¢, solve  — subproblem:
1n51r1ﬁ|\7c—5|2 + 1|6, Analytic solution

2. Fix 9, solve ¢ — subproblem:
min |¢ — ¢*|* + B|Ve — 6]° Quadratic



0 — subproblem

5 — 0,if B(Vc))? <A
" |Vc¢;,  otherwise

1. If B(Vc;)? < A, non-zero 6; yields:
B(Ve; —6)% + Adilo = B(Ve; —8)° + A= 4 = B(V¢;)?

When §; = 0, (Vc; — 6;)% + Al6ilo = B(Vcy)?.
Thus, the minimum is achieved when 6; = 0.

2. |f,8(\7Cl)2 > A,
When 51' =3} IB(VCL' — 51')2 + /”51'0 — IB(VCL')Z > A.
When §; # 0, the minimum is achieved when 6; = V¢; and is A.



(a) (b)

Figure 13: Image abstraction and pencil sketching results. Ou
method removes the least important structures.




Mesh denoising

*c — points p of input triangle mesh
*Vc — discrete differential operator?

*|t is the key.



Ve

* Requirements:
 /c = 0 when the surface is flat

* It is irrespective of the rotation or translation of the
surface.

* Cot Laplacian operator.



1. Fail to reproduce
sharp feature

\ / 2. Shrink the surface

Figure 2: From left to right: noisy input surface with o = 0.3,
vertex-based cotangent operator, our cotangent edge operator, our
area-based edge operator. The bottom row shows wireframes with
flipped triangles denoted by red edges. None of these results use
regularization.




Differential Edge Operator

‘ (Pj — Pj+1)l = (Pj+1 — Po) cotfp iy + (Pj — Po) cot; iy1,0

1
* Vertex-based cot Laplacian operator: Zjeﬂ(po)(pj — pj+1)




Differential Edge Operator

e Simialr to vertex version:

D= ) (p=pe)

JEQ(e)




Differential Edge Operator

T

—cotby31 —cotli347 [py]

cotf,31 +cotlsq, D

*Die) =|_ cotfz 1, —cotl,q3| |P3
| cotBi34 +cOtByq5 | LPal

* ID(e)| = 2sin() |ps — pi




e issue stems from
igenerate triangles

R RN e OCRRAEN ere the cot weights
o SR g lEle proach infinity as an

gle approaches zero.
Figure 2: From left to right: noisy input surface with o = 0.3,
vertex-based cotangent operator, our cotangent edge operator, our
area-based edge operator. The bottom row shows wireframes with
flipped triangles denoted by red edges. None of these results use
regularization.




Area-based edge operator

* LINEAR PRECISION:

* 0 =Yiean @ij(Pi —Pj)=X kea@)ui®i Pk
* At the same time: 0 = Y, keqiyui®;

* Similarly: when p; are planar:
O=Zw] p],O=Za)]
j J

w1 = —A2,3,4» Wy = A1,3,4:

W3 = A1,2,4; Wy = A1,2,3




Area-based edge operator

* It is not scale-independent.
* Scaled by Ay 34 + Aq 53

* How to compute A, 34 and Ay ;5 47

* an isometric unfolding of the surface around the
shared edge




Figure 2: From left to right: noisy input surface with o = 0.3,
vertex-based cotangent operator, our cotangent edge operator, our
area-based edge operator. The bottom row shows wireframes with
flipped triangles denoted by red edges. None of these results use
regularization.




\

Figure 9: From left to right: the input mesh with large noise in random directions, bilateral filtering [Fleishman et al. 2003 ], prescribed
mean curvature flow [Hildebrandt and Polthier 2004 ], mean filtering [Yagou et al. 2002], bilateral normal filtering [Zheng et al. 2011 ], our
result. We show the wireframe of each surface below.




Ly smoothing
Paper: Mesh denoising via Ly minimization

* Paper:
e Slides:

* Blog: http://www.cnblogs.com/shushen/p/5113484.html


http://faculty.cs.tamu.edu/schaefer/research/L0Smoothing.pdf
http://faculty.cs.tamu.edu/schaefer/research/slides/L0Smoothing.pdf

Total Variation-based method

Paper: Variational Mesh Denoising using Total Variation and Piecewise
Constant Function Space

* Replace the vertex positions with the normals.

* Facet normal filtering
* Total Variation

* Vertex updating
* lIterative updating

* How to remove the noise and preserve the sharp feature?
e Sharp feature is sparse.
* Normal difference on edge is sparse.




Total Variation

min Ery + ak,

Ery = ) we Lo 11773




Outline

* Filter-based methods
e Optimization-based methods

e Data-driven methods



Mesh Denoising via Cascaded Normal Regression

cluster-based
feature extraction —_— regression feature extraction

T |

training data cascaded regression model
[= L=
cluster-based

regression

A highly nonlinear function

denoised mesh

N
T e e
L ’ ’- 1|

Runtime denoising stage




Overview

* Goal: learn the relationship between noisy geometry and the ground-
truth geometry

()¢ local noisy region



Cascaded Regression

* The output from the current regression function serves as the input
of the next regression function.

* Each regression function: a neural network with a single hidden layer

cluster-based
feature extraction —_— regression feature extraction

T |

training data cascaded regression model

cluster-based
regression




Offline training stage

* A training pair: (S;, ;)
S;: filtered facet normal descriptor (FND) of it" facet

n;: ground-truth facet normal

e Goal: learn the function:
F: Si — ﬁi,Vi



Runtime denoising stage

* Extract FND for each facet
e Apply F to obtain new normal for each facet

e Recover vertices with known normal

cascaded regression model

noisy mesh denoised mesh

e

Runtime denoising stage




Bilateral Normal Filtering

1
nitt — K—pZ AWs([lei — ¢ DW;([Ini = nf[]) - mf
Iy
Parameters: o, g, iteration number K

* Bilateral filtered facet normal descriptor (B-FND)
Si
p— (nl (O-Sl) O-T'l)} - )nl (O-SL) O-TL)) nl (O-Sl, O-Tl), . ,nl (O-SL’ O-T'L)’ e



Guided bilateral filter (Joint bilateral filter)

1
nitt —— > AW(llei = gl (la ) - 9md|) -
p
I
In this paper, g(nf) = Kipzfj AWs(|le; = ¢i|]) - nf  Gaussian normal filter

* Guided filtered facet normal descriptor (G-FND)
SY
l

= (n;,i(ﬂsl, O'rl), cee ) n;,i(O-SL; O-TL)’



Training data
e Adataset: D = {S;, 1;};-_,

* First Partition the training data into K, clusters via a k-means
algorithm

* For each cluster D;: 85% the training set D;;, 15% validation set D,



Cluster-based regression

e Cost function:

Y
E = Z |A(D;(S)) — 7| + AEreq
Ereq: commonly used L2 regularization term of unknown parameters

®;: regression function as a single-hidden layer feed forward network

N,. hidden nodes .

D;(S) = z exp (—HWl,Tkg - bl,kHZ) a

k=1
S: feature standardization version of S

WlTk S RBLK, bl,k S R, al,k (S R3



Regression function

F(S) = @i(S),iflIS —all < IS —cill, vk

¢;: cluster center of Dj.



Cascaded scheme

* G-FND in the first regression function

(b) G-FND (¢) B—FND (d) Both



Choice of hyperparameters

0, {l,,21,}, I, is the average edge length.
*0,:{0.1,0.2,0.35,0.5, o0}
.K — 1

* 3 cascaded regressions are enough to generate good
results.

* K. = 4 after testing.
* N, = 20 after testing.



L

¢ . .
————— - RLEA = 2 e - . - —— e S B 2 - S i

(a) Noisy input (b) Bilateral normal (¢) Ly smoothing (d) Guided normal (e) Bayesian (f) Our method (g) Ground-truth




Mesh Parameterizations

Xiao-Ming Fu



Outline

* Definition
* Tutte’s barycentric mapping
* Least squares conformal maps(LSCM, ASAP)

* Angle-Based Flattening (ABF)
 ABF++, LABF

 As-rigid-as-possible (ARAP)
* Simplex Assembly
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Definition

* A function that puts
input surface in one-to-
one correspondence
with a 2D domain.

* Parameterization of a
Triangulated Surface
* all (u;, v;) coordinates
associated with each
vertex v; = (x;,v;,z; )7




Goal

* Map attributes
e Color
e Normal

290000 facets 3500 facets

normal

l map

Figure 5.2. Appearance-preserving simplification as another application of pa-
rameterization: The initial object (left) is decimated to 1.5% of the original size
(center). High-resolution geometric details are encoded in a normal map (right)
and mapped to the simplified model, thereby preserving the original appearance.
(Model courtesy of Cyberware. Image taken from [Hormann et al. 07]. (©2007
ACM, Inc. Included here by permission.)



Constraints
* Bijective
* The image of the surface in parameter space does not self-intersect.

* The intersection of any two triangles in parameter space is either a
common edge, a common vertex, or empty.




Constraints

* Inversion-free
* The orientation of each triangle is positive.

foldover




Constraints

* Locally injective
* The orientation of each triangle is positive = det] > 0.

* For boundary vertex, the mapping is locally bijective —
0(v) < 2m.

A
Vi

0(v) < 2m




Constraints

e Low distortion

BDM(9)
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Barycentric Mapping, Tutte’s embedding

* One of the most widely used methods.

Given a triangulated surface homeomorphic to a disk, if the

(u, v) coordinates at the boundary vertices lie on a convex polygon in
order, and if the coordinates of the internal vertices are a convex
combination of their neighbors, then the (u, v) coordinates form a
valid parameterization (without self-intersections, bijective).



Barycentric Mapping

* Homeomorphic to a disk.

* A convex polygon
e circle, square,......

e A convex combination
o a)ij > 0

* Uniform Laplacian, mean value
coordinate

* Solver: linear equation.




Mean value coordinates

* Our aim is to study sets of weights ‘
Ay v, Ay, 20 such that

ZAUL_UO vz

/11' — '
i=1
v; ison 2D.




Proposition

* The weights

V1
pR—— ‘
| )
tan =5 + tan =" Vs ‘ Ve
w; = v
l lv; = voll ' Us

are the valid weights.

Proof: substitution.

Come from the mean value theorem for
harmonic functions. (%

3 Vs



Mean value coordinates

* The input mesh is a spatial one.
* v, ER?
* the mean value coordinates can be applied directly.
* compute the coordinates directly form the spatial angle.

Figure 3. Comparisons from left to right:
(3a) Triangulation, (3b) Tutte, (3¢) shape-preserving, (3d) mean value
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Conformal mapping

* Conformal mappings locally correspond to similarities

Figure 5.8. A conformal parameterization transforms a small circle into a small

circle, i.e., it is locally a similarity transform. (Image taken from [Hormann
et al. 07]. ©2007 ACM, Inc. Included here by permission.)




Mapping

e Build a local coordinate

system on input triangle t. (x5, ;) (w, 7))

* The mapping is piecewise r
linear. —
(Uj, U])‘
o J.is 2 X 2. (%1, ¥}) (X1 Vi) (Ug, Vi)

W we—un o —x xn—xn-t Jt(X) = Jex + by
(v )G )

Vi—=V; Ve —=Vi)J\YVj— Vi Yk —Yi



Mapping

* ], is the Jacobian of f;(x).
/36u ou

dx
Je = oV
\x
ou
dy
_ 1 ()’j — Yk
24 \Xk =% X

Yk

dy

(’)_v
(’)y/

— Vi

(), ¥j)

) fe(x) =Jex + by

(xi yl (ul l)

t

(Xk> Vi) (U, Vi)




Similar transform

* 2D case: for one triangle t

y _(a —b)_S(COSH
‘ b a sin 6

ou _ ov

ax_ay
Jou_ _av

ay_ dx

e Cauchy-Riemann Equations.

—sin @
cos 6

)

Jt =




Least squares conformal maps(LSCM, ASAP)

*Energy
*Ersem = Xt Ay ((gz g;)z I (21; : ZZ)Z)

* measure non-conformality

* It is invariant with respect to arbitrary translations and
rotations.

* £ ccyy does not have a unique minimizer.
* Fixing at least two vertices. Significantly affect the results.
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Angle-Based Flattening (ABF)

* Key observation: the parameter space is a 2D ‘
triangulation, uniquely defined by all the angles
at the corners of the triangles.

* Find angles instead of (u;, v;) coordinates.

* Use angles to reconstruct the resulting
parameterization.

* Optimization goal:

3
2
EApr =Zzw5(“it_ﬁit)
N |

b

»

t t r'glt o Interior vertex
b Optlmalzangles for a;. Bt =173 gt
HE (,Blt ) . \ B{, Boundary verterx




Constraints

* Positive resulting angles:
a; >0

* The three triangle angles have to sum to m:
aj +as+al=m y\

* For each internal vertex the incident angles >
have to sum to 2m:

t
teQ(v) "'
* Reconstruction constraints: 7 )

‘ ‘ sin apgyq = ‘ ‘ sin ay o

teQ(v) teQ(v)




Linear ABF

e Reconstruction constraints are nonlinear and hard to solve.

* Initial estimation + estimation error
t _ ..t t
‘a; =Y te

log( 1_[ sin a,ﬁ@l> = log< 1_[ sin a,§91>

teQ(v) teQ(v)
2 log(sin aj,q;) = z log(sin aj,q;)
teQ(v) teQ(v)

* Taylor expansion:
log(sin a,i@l) = log(sin y,ﬁ@l + e,’é@l)
.t t t
It is linear with estimation error.



Solver

+Sety! =

* Problem: .
mein EABF — z z (Uf(ef)z
subject to t F%‘le =b
—
D AT\(e\ _ (0
(A 0 ) (/1) N (b)
—

e =D 1AT(AD~1AT)"1p 2727



Reconstruct parameterization

* Greed method.
e constructs the triangles one by one using a depth-first traversal.

* Least squares method.

* an angle based least squares formulation which solves a set of linear
equations relating angles to coordinates.



Greed method

* Choose a mesh edge el = (v}, v3).
* Project v} to (0,0,0) and v; to (||et]l, 0,0).
* Push e! on the stack S.
* While S not empty, pop an edge e = (v,, v}, ). For each face
fi = (v,, vy, V) containing e:
* If f;is marked as s¢t, continue.

* If v, is not projected, compute its position based on v,, v, and the
face angles of f;.

* Mark f; as =1, push edge (v, v,.) and (v,, v.) on the stack.

e Accumulate numerical error.



Least squares method

* The ratio of triangle edge lengths HP1P3|| and
|P1P, ]| is .
P P3|  sina;

P, P, sin as

— Sina, (cosa; —sina;\——
1P

p1P3 —_ .
Sin a3 \S1 a4 COS ¢

* Thus for each triangle, given the position of
two vertices and the angles, the position of the
third vertex can be uniquely derived.

* greedy method. PZ




Least squares method

vt=(,k,j), MY (P —P)+P —P,=0
¢ _ sinay (COS@;j —SsInq;
sin a; Sin aj COSQ;

1. Two equations per triangle for the x and y
coordinates of the vertices.

2. The angles of a planar triangulation define it
uniquely up to and

* Introduce four constraints which eliminate these
degrees of freedom.

* Fix two vertices sharing a common edge.




Least squares method

e Choose one edge e! = (v}, v}).
e Project v to (0,0,0) and v; to (]le?]l, 0,0).

* Solve following energy to compute positions of
other vertices:

E= ) [|M{(P —B) + B = By
t
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As-rigid-as-possible method

Paper: A Local/Global Approach to Mesh Parameterization

(a) ASAP (b) ARAP (c) LABF (d) IC (¢) CP

Figure 1: Parameterization of the Gargoyle model using (a) our As-Similar-As-Possible (ASAP) procedure, (b)
As-Rigid-As-Possible (ARAP) procedure, (c) Linear ABF' [ZLS07], (d) inverse curvature approach [YKL*08], and (e)
curvature prescription approach [BCGB0S8]. The pink lines are the seams of the closed mesh when cut to a disk.



Distortion type

* Three common distortion types:
* |sometric mapping: rotation + translation
e Conformal mapping: similarity + translation
* Area-preserving mapping: area-preserving + translation
* Conformal + Area-preserving < Isometric

AD>D)

source Isometric Conformal Area-preserving




Singular values

* |Isometric mapping
* J. = rotation matrix
®* 01 =0p = 1
* Conformal mapping
* J. = similar matrix
* 01 =0y
* Area-preserving mapping
¢ det]t —_ 1
®* 0107 = 1

(x5, i) (g, v;)
‘TI
—
(), vj
(x5, ¥j) (Xk> Vie) (Ug, Vi)

fe(x) = Jtx + b,

/au au\

ox 0y 0., 0, are the two
Jt = v v singular values of J;.

\ox 9y




Goal

(xi, i

(ui’ vi)

)
Uuj, v I
(],L

EuL) = ) Al - Ll
t

L,: target transformation
* [sometric mapping: rotation matrix

. . x , ,
* Conformal mapping: similar matrix (%, %)) (ke Vi) (e, Vi)
* Variables: ft(x) = Jix + by
* 2D parameterization coordinate
* Target transformation /au au\

 How to optimize? 0x 0Jy | v 0zarethetwo
Je = ov v singular values of J;.

\ox 9y




General Local/Global Approach

* Alternatively optimization
* Local step:
* Fix 2D parameterization coordinates, optimize target transformations.
* Global step:

* Fix target transformations, optimize 2D parameterization coordinates.

e Quadratic energy

* Linear system _ . 2
. Eigen E(u, L) = E AellJe — Lell7
t



. Procrustes analysis

* Approximate one 2 X 2 matrix J; as best we can by another
2 X 2 matrix L.

*d(Je, Le) = lJe — Lellf = trace((]t — L)' — Lt))

* Minimize d(J;, L) through Singular Value Decomposition (SVD)
o T (o1 O
Je =UxV", Z—(O 02)
* Signed SVD: U and V are rotation matrix, o, maybe negative
* Best rotation: UVT

S 0 o1+0
)VT,s= 12

e Best similar matrix: U(
0 s 2



Local/Global Approach summary

VAVANINY AYAVANAY
@% %g?ﬁw%%@%& i%'/‘jggégg‘
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‘_%Ag\z] @Q%

<Y " ‘wé\
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Figure 2: Parameterizing a mesh by aligning locally flat-
tened triangles. (Left) Original 3D mesh; (middle) flattened
triangles; (right) 2D parameterization.




Connection to singular values

(xi' Vi

(ui, vi)
e Conformal

E@ = ) Ao} - 02)?
t

)
T
—

(), v,
° IES((){BemC (x5, y5) (X1 Vi) (Uks Vi)
= > Aot = D2 + (2~ 1)?) o) = Jex B
- of, of are the two

singular values of /.

L) = ) Al — Ll
t
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* Least squares conformal maps(LSCM, ASAP)

* Angle-Based Flattening (ABF)
 ABF++, LABF

 As-rigid-as-possible (ARAP)
e Simplex Assembly



Information

* Computing Inversion-Free Mappings by Simplex Assembly
 ACM Transactions on Graphics(SIGGRAPH Asia) 35(6), 2016.
* http://staff.ustc.edu.cn/~fuxm/projects/SimplexAssembly/index.html



Affine transformation

Key observation: the parameter space
is a 2D triangulation, uniquely defined

by all the
on the triangles.

Edge assembly constraints:
Ai(vg —vp) = Aj(va — Vp)



Key idea

e disassembly + assembly

* Treat affine transformation as
variables

* Unconstrained optimization




Distortion control

(
“ladlef|aY,  d=2
_1n2
kg(uAiu,%llAi Ho-1).d=

Conformal: df =<

Volumetric: d¥°! = (det(A ) + Jota, ))

Isometric: d*° = 0.5 (df + d?°")

Barrier function on distortion:
1. The type of distortion and distortion
bound K are given:

>l<

N
=) i—a
=

2. The type of distortion is not specified

or distortion bound K = oo:
N

=1




Unconstrained optimization problem

Disassembly: project initial Assembly: unconstrained

A? into feasible space. optimization.
Eqssempbiy: summation of squares of edge,
assembly constraints.

min ass y C m
E.: Barrier function on distortion
Ecr + UEm & E,,: users’ designed energy
Ak+1 = min| Ay - Max ’ —, 1), Amax
Eassembly,k

1. Egssempiy dominates the energy, approach zero;
2. Amax: avoid large distortion.
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Optimal bound

e Use the current maximal
distortion as the bound
for the next round of
minimization.

[Lipman 2012]

i,

QN
VN
/

ZLAJ

(4.39,1.107,0.09s) (4.39,1.139,20.9s)

(1.68,1.053,1.59s) (1.68,1.047,45.6s)



Locally injective mapping

e Requirements for locally
injective mapping on triangle
mesh:

e 1. inversion-free;

e 2.the sum of triangle angles
8, around boundary vertex v
is less than 2.

* A barrier term:

Fo= ) !
o 21T — 6,

VEOM

[Kovalsky et al. 2012] Ours without Ey Ours with Eg



Barycentric Coordinates

Xiao-Ming Fu
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Barycentric coordinates on triangles

X =¢iv; + ¢2V2 + ¢3v3,
where ¢; = A

e Tetrahedron with four sub-
tetrahedral.

* Any simplex.




Applications

* Function interpolation
* Function composite

* Defining Bernstein-Bézier polynomials over simplices
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Generalized barycentric coordinates

* Let P C R? be a convex polygon, viewed as
an open set, with vertices v{, v,,...,V,,Nn =
3, in some anticlockwise ordering.

* Any functions ¢;: P - R,i = 1, ...,n, will be
called generalized barycentric coordinates if
Vx € %qbi(x) =>0,i = 1,...,n, and

2 Pi(x) = 1,2 o; (X)v; = x
=1 i=1

* ¢;: from any point in polygon P to R




Triangular barycentric coordinates

A(X, Vg1, Vig2)
A(Ul, Uy, UB)

¢i(x) =

Note: A(py, p,, p3) is the signed area of
the triangle with vertices p,, =

X1, k=123,
(%K) Vi) " " "

A(xq,x5,x3) =5 X1 X, Xj
Yi Y2 V3

When n = 4, it is not unique.



Some basic properties/requirements

* The functions ¢; have a unique continuous extension to dP,
the boundary of P.

* Lagrange property: qbi(vj) = 0j;
* Piecewise linearity on dP
* P ((1 — Wv; + ij+1) = (1 —wi(vj) + upi(vjr1) 1 € [0,1].

* Interpolation

clfgx) =21, ;(x)f(v;),x € P,then g(v;) = f(v;). Wecall g a
barycentric interpolant to f.

* Linear precision: if f is linearthen g = f.



Some basic properties

*[; < ¢; < L; where L;, [;: P = R are the continuous, piecewise linear
functions over the partitions of P satisfying Li(vj) = li(vj) = 0jj. L;
is the least upper bound on ¢; and [; the greatest lower bound.

Figure 2.3. Partitions for L; and 4;.
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Bilinear interpolation
https://en.wikipedia.org/wiki/Bilinear interpolation

* Suppose that we want to find the value of
the unknown function f at the point (x,y). B&

e [t is assumed that we know the value
of f at the four points Q,; =

(x1,¥1), Q12 = (X1, ¥2), Q21 = (X, ¥1),
Qy = (x3¥,).

* Bilinear interpolation: The key idea is to
perform linear interpolation first in one
direction, and then again in the other
direction.



Bilinear interpolation
https://en.wikipedia.org/wiki/Bilinear interpolation

x-direction

Xy — X

f(x,y1) = f(Q11) +
xz %

f(x,y,) = f(Q12) T

X2 — X2 —

f(Q21)
f(sz)

Yy —V1

ydlrectlon
f(x, )— ylf( 1)+y2 ylf(x,yz)

(2 y)(xz— )f(Q11)+ V2 —y)(x — xq1)

TR AT G362

Ry Teamm VALLE R crmpr o

f(Q21)
f(Q22)




Unit square

* Supposex; =y =0,x, =y, =1
fx,y)
+ (1 —x)y-f(0,1) +xy-f(1,1)




Convex quadrilaterals

* View P as the image of a bilinear map
from the unit square [0,1] x [0,1].

* For each x € P, there exist unique A, u €
(0,1) such that

1-HDA—-—wvy +A(1 — vy, + Auvy +
(1 — A)uv, = x and so the four functions

1 (x) = (1 = D)1 — ), Ppp(x) =
Al = p), P3(x) = A, Pg(x) = (1 =

A)u are barycentric coordinates for x.




Inverse of the bilinear map

* A;(x) = A(x, v}, v41), Bi(x) = A(x, vi_1, Vi 1)
* Theorem

24,
m1=A1=pA)=\7%
1=1,2,3,4

I

where E; = 24; — B; — B;,1 + VD and
D = B? + B2 + 2A4,A3 + 2A,A,.

Therefore
_ 4A; 11447

Eiv1Eitr

I




Inverse of the bilinear map

* Proof process, i.e., computational process:

e Known: (1 —A)(1 —wv, + A(1 — v, + Auvy +
(1 — A)uv, = x and the convex quad P

* We want to solve 4, u.




Proof. 1t is sufficient to show that
24, 24,
Ei 24, — By — By + VD
as the derivation of the other three terms in (3.2) is similar. Defining the four
vectors d; = v; —x,i=1,2,3,4, (3.1) can be expressed as

(1 —=X)(1—p)dy + A1 — p)ds + Apds + (1 — A)pdy = 0.
Next, divide the equation by Au, and defining

1—A

| 1 —pu
o= ——, 3= ,u?

A | [

po=

the equation becomes

afd; + Bds + dg + ady = 0.
By writing this as
a(fd; +dy) + (Bds +d3z) = 0,
and taking the cross product of it with 3d; + d4 eliminates a:
(8d; +dy) x (Sdy +d3) = 0.

(Here, a x b = (ay,as) X (b1,b) := a1ba —asby.) This is a quadratic equation
in 3, which, in terms of the A4; and B;, is

A13% + (By + By)3 — Az = 0.

The discriminant is

D = (B + By)* + 44, 43 > 0,



and so the equation has real roots, and /3 is the positive one,

,_ —Bi-B:+VD
o= 24, |

Next observe that

B1Bs = A Ay — A Ag,
which follows from taking the cross product of d4 with the well known equation

(dl X d_g} dg -1 f L']g X dg ]dl + l: Cl:g X d.l }d__; = ().

From this we find that D can be expressed as (3.3). From [ we now obtain

p=1/(1+75). ]
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Mean value coordinates (MVC)

The weights
bi =
i — on ’
. 1'1:1 W .
L— “i
| =tan( 5 )+tan(2)
l lv; — ol

are coordinates for v, with respect to
vl, " Un.




Three requirements



Three requirements

* Proof.
v; = Vo + 1;(cos 8; ,sin 6;)
Then we have

Vi — Vp ( 0 - )
= (cos 6; , sin 0;
lvi — ol l l
a; =0i41 — 0,
Then,
n
z ¢i(x)(v; — vp)

i=1p

_ 2 (tan (%) + tan (%)) (cos 8;,sin ;)

=1




Proof

ﬁM:
=

1=

(tan ( 2 1) + tan (C; )) (cosB;,sin6;)

1 tan (?) ((cos 0;,sin6;)




Proof

Since
cos 0 sin(6;,.1 — 6;)
sin(6;,1 — 6;)
_ cos¥d sin(0i+1§+clos Hil— cos 8 sin(6;) cos 0; 4

cos @ =

_ sin(a;)
cos 0 sin(8;,,) cos 8; — sin O cos 6; cos 6, 4

sin(a;)

N sin @ cos 08; cos 8;,; — cos 8 sin(6;) cos ;1
sin(a;)

_ sin(f;41 — 6) cos 0, N sin(8 — 6;) cos ;.4

sin(a;) sin(a;)




Proof

Similarly,
_ sin(f;,; —60)sinf; sin(f —6;)sinb;,4
sin f = , + .
sin(a;) sin(a;)
As we know
n Bi+1
= j(cos 6,sin0)do = z f (cos@,sin8)d6
i=1 9,
Tl 0l+1
sin(6;;1 — 6) .
(cos 6;,sinb;)
sin(a;)
sm(d 0;)

+ sin(a;) (cosB;,1,sin0;,,)db




Proof

Si%qe 0.
i+1 sin(9i+1 _0) i+1 sin(0 — 6,)
f _ 6 — f _ do
sin(a;) sin(a;)
"1 — cos q; a
— : = tan —
sin a; 2
Thus

-

Il
=

tan (%) ((Cos 0;,sin 6;)

l




Motivation of MVC

* The motivation behind the coordinates was an attempt to
approximate harmonic maps by piecewise linear maps over
triangulations, in such a way that injectivity is preserved.

* Uyy +Uyy =0



Motivation of MVC

* Suppose we want to approximate the solution u with respect to
Dirichlet boundary conditions, u;3q = ug, by a piecewise linear
function ur over some triangulation T of ().

* fQ ||7uT|2 dx
* boundary conditions
* a sparse linear system

* ur(vo) = Xizq1 @i ur(v;)
e Tutte’s embedding

* Mean value theorem:

1
u(vy) = Z_Wfr u(v)ds




Motivation of MVC

* Thus, we want to find

1
up(vo) = 5 — fr 1, () ds

for r sufficiently small that the disc B(v, 1) is
entirely contained in the union of the triangle
containing v,.

If above condition is satisfied # ur(vy) =
* 1 ¢; ur(v;) where ¢; isfindependent of
the choice of r.



Motivation of MVC

* Lemma: if f: T; = R is any linear function then

fri Fw)ds = ra;f(vy) + rztan(C;i) (f(vl) — f(vo) + fWig1) — f(%))

[|vi — ol V41 — Vol
* Proof: Vv € I}, v = vy + r(cosB, sin 0)

and v; = v, + 1;(cosb;, sin 6;).

Then, [ f(v)ds = rf:_i“f(v)de
Since f is linear, and using barycentric coordinates

W EVSI O ESICHORFAICORIICH),
+4, (f(vi+1) — f(vo))




Motivation of MVC

Aq Aj
(] A e e— A e —
L™ 47727 4
* A1: AvgvV;1q, Ay AUV
1 . 1 .
* A =ontipgsinag, Ay = ST Sin(0i4 — 0),

A, = ST sin(6 — 6;)

. __rsin(fi41-0) __rsin(6-6;)
Ay = r; sin a; 9' A2 = ri+1 Sin a;
i+1
| fwds=r| " rao
I'; 0;

0i+1

=T f(vo) + A1(f(vi) — f(vo)) + 1, (f(vi+1)

0;



Motivation of MVC

* Proposition: Suppose the piecewise linear function ur : 0 = R satisfies
the local mean value theorem, i.e., for each interior vertex v, it satisfies

1 . .
ur(vy) = %fr u;(v)ds for some r > 0 suitably small. Then ur(v,) is

given by the convex combination in ur(vy) = Yiv, ¢; ur(v;) with the
weights ¢; is




Proof of Proposition

1
ur(vg) = Z_m"
r
ur(vo) n
1
= ra;ur(vy)

"~ 2mr

1=

=




Applications of MVC

* Parameterization
e Mean Value Coordinate

e Deformation

* Mean Value Coordinates for Closed Triangular Meshes
* Poisson image editing

* Coordinates for Instant Image Cloning

 Diffusion curves/surfaces
* Volumetric Modeling with Diffusion Surfaces
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Deformation
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Deformation




(d) Target image (e) Poisson cloning (f) Mean-value cloning



Concave Po |ygo N Yellow indicates positive values

Green indicates negative values




MVC doesn’t have

* Non-negativity
* All weights are positive

* Interior locality

* Interior locality holds, if, in addition to non-negativity, the coordinate
functions have no interior extrema.
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Harmonic Coordinates

V2¢;(x) =0,vx € P
s.t.¢;(0P) = h;(9P)

h;(0P): the (univariate) piecewise linear function such that hi(vj) =

0; ;-

* Non-negativity: harmonic functions achieve their extrema at their
boundaries.

* Interior locality: follows from non-negativity and the fact that
narmonic functions possess no interior extrema.




Numerical solution

* 1. Allocate a regular grid of cells that is large enough to enclose the
cage.

2. Laplacian smooth: For each INTERIOR cell, replace the value of the
cell with the average of the value of its neighbors. This Laplacian
smoothing step is performed iteratively until the termination criterion
is reached.

* A simple hierarchical finite difference solver

* By first solving the problem at a lower resolution, better starting points for
the iteration can be obtained.



Mean Value Harmonic




More papers

* Green Coordinates, 2008

 Complex Barycentric Coordinates with Applications to Planar Shape
Deformation, 2009

* A Complex View of Barycentric Mappings, 2011
e Poisson Coordinates, 2013
e Cubic Mean Value Coordinates, 2013
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Linear blend skinning

 Skeleton-subspace deformation




Linear blend skinning - input data

* Rest pose shape
* Represented as a polygon mesh

* The mesh connectivity is assumed to be constant, i.e., only vertex positions
will change during deformations.

e Rest-pose vertices: v, ..., v, € R3

* Bone transformations
* A list of matrices

* Spatial transformations aligning the rest pose of bone i with its current
(animated) pose.

* Skinning weights
* For vertex v;, we have weights w; 1,...,w; , ER..
* Each weight w; ; describes the amount of influence of bone j on vertex i.



Linear blend skinning - Bone transformations

Figure 1: Bone transformations (lower and upper arm bones) for one example deformed pose.



Linear blend skinning - Skinning weights

Figure 2: Influence weights corresponding to lower and upper arm bones.



Deformed vertex positions

m m
new __ —
Vi = zWi,ijvi = ZWuTJ Vi
j=1 j=1

The latter form highlights the fact that the rest pose vertex v; is
transformed by a linear combination (blend) of bone transformation
matrices T;.



Recap of properties

* Interpolation (Lagrange property)

* Smoothness

* Non-negativity (¢;(x) = 0)

* Interior locality

e Linear reproduction ()i, ¢; (x)v; = x)

* Affine-invariance = Partition of unity (};;-; ¢;(x) = 1)



Some papers

* Bounded Biharmonic Weights for Real-Time Deformation, 2011
* Local Barycentric Coordinates, 2014
* Linear Subspace Design for Real-Time Shape Deformation, 2015



Bounded Biharmonic Weights for Real-Time
Deformation

* Real-time performance is critical for both interactive design and
Interactive animation.

* Among all deformation methods, linear blending and its variants
dominate practical usage thanks to their speed

* each point on the object is transformed by a linear combination of a small
number of affine transformations.

* Real-time object deformations would be easier with support for all
handle types: points, skeletons, and cages.

e Goal: smooth and intuitive deformation



Various handles

Points
Bones
Cages

Figure 2: Left to right: Although cages allow flexible control, set-
ting up a closed cage can be both tedious and unintuitive: the Pi-
rahna’s jaws require weaving around the teeth. In the case of the
Vacuum, points can provide crude scaling effects, while cages pro-
vide precise scaling articulation. Point handles can provide loose
and smooth control, while achieving the same effect with a skeleton
results in an overly complex armature.




Handles - Points

* Points are quick to place and easy to manipulate.

* They specify local deformation properties (position, rotation and
scaling) that smoothly propagate onto nearby areas of the object.




Handles - Bones

e Bones make some directions stiffer than others.

* If a region between two points appears too supple, bones can
transform it into a rigid limb.




Handles - Cages

e Cages allow influencing a significant portion of the object at once,
making it easier to control bulging and thinning in regions of interest.




Bounded biharmonic weights

arg min
wj, jZl

subject to: w;

w; | 1S linear

Z’wj(P) =1

0 <w;(p) <1, j




Properties

* Smoothness (A*w; = 0)

 The bounded biharmonic weights are C*! at the handles and C® everywhere
else, provided that the posed boundary conditions are smooth.

* Non-negativity

e Shape-awareness: bi-Laplacian operator

* Partition of unity

* Locality and sparsity: just observation

* No local maxima: experimentally observed
* No Linear reproduction (}./-; ¢;(x)v; = x)



Properties

| )

O

o [Tirel ol ol
9,/’ el 9// & 9,/ &

Figure 3: Bounded biharmonic weights are smooth and local: the blending weight intensity for each handle is shown in red with white
isolines. Each handle has the maximum effect on its immediate region and its influence disappears in distant parts of the object.




Properties

Figure 4: Weights like unconstrained biharmonic functions that
have negative weights (left) and extraneous local maxima (right)
lead to undesirable and unintuitive behavior. Notice the shrinking
of the head on the right.




Bounded Biharmonic Weights
for Real-Time Deformation

Alec Jacobson’

llya Baran®
Jovan Popgviéﬂ 1NTEW York University |
O S . 14 “‘Disney Research, Zurich
Iga orkine™ ‘Adobe Systems, Inc.
‘ETH Zurich

This video contains narration



Local Barycentric Coordinates

* A local change in the value at a single control point will
create a global change by propagation into the whole
domain.

* Global nature
* The first one is the lack of locality and control over a deformation.

* The second drawback is scalability.

* Most practical applications store barycentric coordinates using one scalar
value per control point for every vertex of the target domain.



Formulation




PN
+
I

O

@)
]




Local extrema

* TV measures oscillation, and hence its minimization inhibits local
extremal values.



Demo



inear Subspace Design for Real-Time Shape
Deformation

* Linear reproduction

e Cot weights of Laplacian satisfy.
° ?



Demo
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Simplification and approximation

* Transform a given polygonal mesh into another mesh with fewer
faces, edges, and vertices.




Simplification and approximation

* Transform a given polygonal mesh into another mesh with fewer
faces, edges, and vertices.

* The simplification or approximation procedure is usually controlled by
user-defined quality criteria.



Curvature-preserved criteria

2053 1500 1000 500 100 50 4



Curvature-removed criteria

2053 1500 1000 500 100 50 4



Simplification applications
* Adjust the complexity of a geometric data set

e Since many decimation schemes work iteratively, i.e., they
decimate a mesh by removing one vertex at a time, they
usually can be inverted.

e Hierarchical method
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Vertex removal

Vertex Removal
— >

s
Vertex Insertion




Edge collapse

Edge Collapse
—

<+
Vertex Split




Half-edge collapse

Halfedge Collapse
—_—

-

Restricted Vertex Split

After collapse: n(E) — 3, n(V) — 1, n(F) — 2.

According to Euler’ formula: 2 - 2m =n(V) + n(F) — n(E).
Half-edge collapsing would not change the genus of a mesh.
OpenMesh: collapse(), is_collapse ok().



Topologically illegal (half-)edge collapses
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Incremental algorithms

* Removing one vertex at a time

* The iterative decimation procedure can take arbitrary user-defined
criteria into account, according to which the next removal operation
is chosen.



Quadric error metric (QEM)

* The squared distance of a point x from the
plane P;:

d(x, P) = (n x—d)
d; = nix;
Denote x = (x,1) and n; = (n;, —d;).
Then:
d(x, P) = (%) = xTaymTx = %7 Q%

Quadratic error Matrix



Quadratic error Matrix Q

* On vertices

Qf=ZQf

JEQ(D)

* On edge
Q¢ = Q7+ Q7

Before




QEM error

* QEM error On edge:

U = argminv! Q¢v
v

Note: Q®may not a full rank matric

* Q onVisjust Q°.

NNy




QEM Algorithm

Input: a mesh
Output: a simplified mesh
Initialization:
Compute the Q¢ matrices for all the edges.
Compute the optimal contraction target v for each edge.
While N, > nand Cost,,;,, <t
The error 71 Q¢7 becomes the of the edge.
Place all the edges in a priority queue keyed on cost with minimum
edge at the top.
Remove the edge of the least cost from the heap, collapse this
edge, and update the costs of all edges involving.

End;
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Variational shape approximation (VSA)

* VVSA is highly sensitive to features and symmetries and produces
anisotropic meshes of high approximation quality.




Variational shape approximation (VSA)

* The input shape is approximated by a set of proxies.
* A planein space through the point x; with normal direction n;.




Region representation

Rl U---U Rk — M
M: a triangle mesh
R ={R4, ..., Ry }: a partition of M into k regions.

Proxies: P = {P4, ..., P}, P; = (x;,n;)



Distance metrics between R; and P;

* The squared orthogonal distance of x from the plane P;.
L*(R;, P;) = J (nfx — nl-xl-)sz

XER;

e A measure of the normal field:
2AR,P) = [ lInG) - nil?da

XER;



Goal of VSA

* Given a number k and an error metric E (L? or L*1), find a set R =
{R{, ..., Ry} of regions and a set P = {P, ..., P, } of proxies such that
the global distortion

k
E(R,P)= ) E(Ry,P)

is minimized.



Lloyd’s clustering algorithm

* The algorithm iteratively alternates between a geometry partitioning
phase and a proxy fitting phase.

* Geometry partitioning phase
* a set of regions that best fit a given set of proxies

* Proxy fitting phase
* the partitioning is kept fixed and the proxies are adjusted

* Initialization
* randomly picking k triangles as R
e The planes of k triangles are used to initialize P



Geometry partitioning phase

* Modifies the set R of regions to achieve a lower approximation error
while keeping the proxies P fixed.



partition(R = {Ri,..., R}, P ={P1,..., Px})

A

// find the seed triangles and initialize the priority queue
queue = ()
for i=1 to k do

select the triangle t € R; that minimizes F(t, P;)

Ri = {t}

set t to conquered

for all neighbors r of ¢ do

insert (r,P;) into queue

// grow the regions
while the queue is not empty do
get (t,P;) from the queue that minimizes F(t, P;)
if ¢ is not conquered then
set ¢ to conquered
R: =R, U{t}
for all neighbors r of ¢ do
if r 1s not conquered then
insert (r,P;) into queue




Proxy fitting phase

* The partition R is kept fixed, the proxies P; are adjusted in order to
minimize approximation errotr.

e L2 metric
* The best proxy is the least-squares fitting plane.

e L1 metric
* The proxy normal n; is just the area-weighted average of the triangle normals.
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Definition

* The deformation of a given surface S into the desired surface S’
* a displacement d(p) on each vertexp € S

* S'={p+dlp €S}
* The user controls the deformation by

* prescribing displacements d; for a set of vertices p; € H C S.
e constraining certain parts F stay fixed.
* handles

* The main question: determine the displacements for vertices in
S\(HUF).



R H
e v
14 _—>
p—p+d(p

Figure 9.1. A given surface S is deformed into S’ by a displacement function
d(p). The user controls the deformation by moving a handle region H (yellow)
and keeping the region F (gray) fixed. The unconstrained deformation region R
(blue) should deform in an intuitive, physically-plausible manner.



Two classes of shape deformations

 Surface-based deformations
* The displacement is defined on each vertex
* A high degree of control, since each vertex can be constrained individually.

* The robustness and efficiency of the involved computations are strongly
affected by the mesh complexity and the triangle quality of the original
surface S.

e Space deformations
* Displacement is defined on each point in the space.
* Smooth.
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ransformation Propagation

* Propagating the user-defined handle transformation:

v'1. specify the support region of the deformation

v'2. specify a handle region within the support region

v'3. the handle is transformed using some modeling interface

v'4, propagate the transformation of handle and damp within

the support region

v'leading to a smooth blending between the transformed handle and the fixed
region



Figure 9.2. After specifying the blue support region and the green handle region
(left), a smooth scalar field is constructed that is 1 at the handle and 0 outside
the support (center). Its isolines are visualized in black and red, where red
is the —%—-isoline. This scalar field is used to propagate and damp the handle’s
transformation within the support region (right). (Image taken from [Botsch

et al. 06b]. ©2006 ACM, Inc. Included here by permission.)
o



Smooth blend

e Controlled by a scalar field:
* 1is atthe handle;
* Ois at the fixed region;
* smoothly blends between 1 and 0 within the support region.

* One method:
* dr(p): distance from p to the fixed region
* dy(p): distance from p to the handle

dr(p)
dr(p) + dy(p)

s(p) =



Harmonic field

AS(pi) =0 Vpl € R

s(pi)=1 Vp,€H

s(pi) =0 Vp,EF
Simple to implement



Discussion

* simple and efficient to compute

 distance-based propagation of transformations will typically not result
in the geometrically most intuitive solution.

o 6 6

Figure 9.3. A sphere is deformed by lifting a closed handle polygon (left).
Propagating this translation based on geodesic distance causes a dent in the
interior of the handle polygon (center). A more intuitive solution can be achieved
by minimizing physically-motivated deformation energies (right). (Image taken
from [Botsch 05].)




Outline

* Definition

* Transformation Propagation

e Multi-Scale Deformation

e Differential Coordinates

e Deformation transfer

* As-Rigid-As-Possible surface deformation

 Freeform Deformation
* Meshless mapping

* Volumetric Deformation
* Tetrahedral mapping



Multi-scale deformations

* Main idea: decompose the object into two frequency bands using the
smoothing and fairing techniques.
* the low frequencies correspond to the smooth global shape;
* the high frequencies correspond to the fine-scale details.

* Goal: deform the low frequencies (global shape) while preserving the
high-frequency details




Multi-Scale Deformation

o k 0
O ' @
= . Q

8 Deformation | S

: > — 2

oy

: | &
a B ’ S

Geometric
B :
D Details

Figure 9.7. A general multi-scale editing framework consists of three main op-
erators: the decomposition operator, which separates the low and high frequen-
cies; the editing operator, which deforms the low frequency components; and
the reconstruction operator, which adds the details back onto the modified base
surface. Since the lower part of this scheme is hidden in the multi-scale kernel,
only the multi-scale edit in the top row is visible to the designer. (Image taken
from [Botsch and Sorkine 08]. (©2008 IEEE. Model courtesy of Cyberware.)




Pipeline

* First a low-frequency representation of the given surface S is
computed by removing the high frequencies, yielding a smooth base
surface B. The geometric detail D = S © B.

* Deform the B to B’
* Adding the geometric detailsonto B": S' = B' @ D

* O: decomposition
* P: reconstruction
* mesh smoothing or fairing



Representation for the geometric detail

* The straightforward representation: a vector-valued displacement

function
* associates a displacement vector to each point on the base surface.

e per-vertex displacement vectors
*pi=Db;+h;,p; €S, b; €B, h; € R3

* Encoded in local frame
hi = an; + Biti1 +viti-

n;:normal
ti 1, ti2: two tangent vectors



Encoded in local frame

* When the base surface S is deformed to S’
h; = a;n; + Bit; 1 +Viti,

p; = b; + h;

Figure 9.8. Representing the displacements with regard to the global coordinate
system does not lead to the desired result (left). The geometrically intuitive
solution is achieved by storing the details with regard to local frames that rotate
according to the local tangent plane’s rotation of B (right). (Image taken from

[Botsch 05].)
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Gradient-Based Deformation

e deform the surface by
* 1. manipulating the original surface gradients

2. finding the deformed surface that matches the target gradient field in the
least-squares sense




Gradient-Based Deformation

e Gradient of the coordinate f_anctiqn on facet f;
px,i

Vp; = |VPy,i| =:]; € R®*3
_sz,i_
The rows of J; are just the gradients of the x-, y- and z-coordinates.

 Manipulation: J; = M;J;
e M;: local rotation/scale/shear, (discussed later)
* breaking up the mesh. (similar to ARAP parameterization)



Find new vertex positions p; Ji = My
* Goal: the gradient of p; are as close as possible to J;

: new vertex position

A;: the area of facet f;

Vp;: the gradient is defined on the original surface (just replace the
function value)

Solving Laplace equation for x, vy, z.
Poisson equation.



Laplacian-Based Deformation

* manipulate per-vertex Laplacians instead of per-face gradients

* 1. compute initial Laplace coordinates §; = A(p;)

* 2. manipulate them to §; = M;d;, (discussed later)

« 3. find new coordinates p; that match the target Laplacian coordinates

E=) ala@)) - 5113
L

A;: local average area for vertex i.
bi-Laplacian system

Uniform Laplace or cot Laplace

The cot weight A(p;) is same to A(p;).



Local Transtormations M; for face

* Propagation of deformation gradients.

* The user manipulates the handle by prescribing an affine transformation
T(x) =Mx+t

M: gradient of T (x)

* propagate this matrix over the deformable region and damp it using the
smooth scalar field.

e Rotations should be interpolated differently than scalings.



Propagation of deformation gradients

* Polar decomposition:

M=R-S

R=UvT

N A
Where

M =UxyT

R: rotation; S:scaling
rotation and scaling components are then interpolated separately



Propagation of deformation gradients

* Rotation: quaternion interpolation R;
e Scaling: linear interpolation S; = (1 —s;)S +s; - Id
¢ Mi — Ri . Si

e Discussion:

» works very well for rotations
* insensitive to handle translations



Local Transtformations M; tor vertex

* Implicit optimization: simultaneously optimize for both the new
vertex positions p; and the local rotations M;.

E=) AllA®) - M6}
l

* To avoid a nonlinear optimization and rigid transformation is desired
* linearized similarity transformations, skew-symmetric matrices

Si _hi,z L,y
M; =| hi, Si —hiy




Local Transtformations M; tor vertex

* To determine s;, h; 5, h; ,, and h; ,:
M;(p: —pj) = pi — pj,Vj € Qi)
Then:
M; is a linear combinations of p;.
E =Y, A;llA(p)) — M;5;||% becomes a quadratic energy.
Linear least-squares problem, which can be solved efficiently.

The linearized transformations lead to artifacts in the case of large
rotations.



(b)

Figure 1: The editing process. (a) The user selects the region of interest — the upper lip of the dragon, bounded by the belt of
stationary anchors (in red). (b) The chosen handle (enclosed by the yellow sphere) is manipulated by the user: translated and
rotated. (c) The editing result.




(a) (b) (¢)

Figure 2: Different handle manipulations. (a) The region of interest (arm), bounded by the belt of stationary anchors, and the
handle. (b) Translation of the handle. (c) Subsequent handle rotation. Note that the detail is preserved in all the manipulations.
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Deformation transfer

Referenc
Q
>
=
o)
(Vp)
- }'/
Q
o 7
o

Figure 1: Deformation transfer copies the deformations exhibited by a source mesh onto a different target mesh. In this example, deformations
of the reference horse mesh are transfered to the reference camel, generating seven new camel poses. Both gross skeletal changes as well as
more subtle skin deformations are successfully reproduced.




Deformation transfer

* The goal of deformation transfer: transfer the change in shape exhibited by the
source deformation onto the target.

* Input: source deformation
 a collection of affine transformations tabulated for each triangle of the source mesh.

Reference

* The three vertices of a triangle before and after deformation do not fully
determine the affine transformation.



Affine transformation

* v; € undeformed, 7; € deformed

* add a fourth vertex in the direction perpendicular
to the triangle.

Uy =V +1n
n =W, —vy) X (w3 —v1)/|(v, —v1) X (V3 — vy)|

1. an analogous computation for 7,
2. How to compute the Affine transformation? Uy




Transfer

* Transfer the source transformations via the correspondence map to

the target.
2
E= ) 57l
i

1. Require one-to-one correspondence between source and target
model.

2. Least squares.



Source

Target

Reference

Figure 7: Scanned facial expressions cloned onto a digital character.
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As-Rigid-As-Possible Surface Modeling

* Goal: preserve shape meaning that an object is only rotated or
translated, but not scaled or sheared.

* small parts of the shape should change as rigidly as possible

* Energy: .
FE :Ewi 2 Wij”(pl{_p]")_Ri(pi_pj)Hz
i=1  jeQ(i)

w;, w;j: fixed cell and edge weights.
w;;: cot weight; w;: local average area

Variables: R; and p;



Ny
Local step E = Ewi z w; || (p; —P}) - Ri(p; —PJ)HZ

i=1  jeQ(i)

* Given p;, compute R;

E; = 2 Win(Pf—P})—Ri(Pi—Pj)Hz

JEQ(D)
Sete;; = p; —pj, eij = Pi — D,

E; = z wij(e; —Rieij)T(ei'j — Rieyj)

. ’T ’ ’T



Ny
Local step E = Ewi z w; || (p; —P}) - Ri(p; —PJ)HZ

i=1  jeQ(i)

arg min z wij(errerr— 2e)] Rieij +-e5ex)

R; i
JEQD)
= arg max z w;j2e;; 'R, i€jj = arg maXTr 2 wijR;e;;e; ]
JEQ(D) b JEQ()

—argmaxTr z w;iR;e;;e; ] =argn}2aXTr R; Z Wijel-jei'jT
R; i

JEQ(D) JEQ(D)



Ny
Local step E= ) w; z Win(Pf—P})—Ri(Pi—Pj)HZ

i=1  jeQ(i)

Set Si = ZjE.Q(i) Wijeijei'f and Si = UiZiViT.

If M is a positive-symmetric-definite matrix then for any orthogonal R,
Tr(M) > Tr(RM).

The rotation matrix R; maximizing Tr(R;S;) is obtained when R;S; is
symmetric positive semi-definite.

= R; = V;U/.



Ny
!/ !/ 2
Global step E=Yw ) wyl(vi-p))—R(pi— )
i=1  jeQ()
* Given R;, compute p;
* Linear squares, easy to solve

* Initial deforamation
* 1. Previous frame (for interactive manipulation)
* 2. Naive Laplacian editing



Poisson our method Poisson our method

Figure S: Comparison with Poisson mesh editing. The orig-
inal models appear in Figures 2 and 7. The yellow han-

dle was only translated; this poses a problem for rotation-
propagation methods such as [YZX"04,ZRKS05, LSLCO05].



Figure 7: Bending the Cactus. (a) is the original model; yellow handles are translated to yield the results (b-f). (d) and (e) show
side and front views of forward bending, respectively. Note that in (b-e) a single vertex at the tip of the Cactus serves as the
handle, and the bending is the result of translating that vertex, no rotation constraints are given.
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Space deformations

* Deform the ambient space and thus implicitly deform the embedded objects.

Figure 9.12. Space deformations warp the embedding space around an object

and thus implicitly deform the object. (Image taken from [Botsch et al. 06b].
(©2006 ACM, Inc. Included here by permission.)




Lattice-Based Freeform Deformation

* Freeform deformation represents the space deformation by a trivariate
tensor-product spline function

dGwv,w) =) > > e NGON; (r)Ne(w)
|

1. N; are B-spline basis functions

!

2. 0Cijk = Cjj — Cijk displacements of the control points c;jy

3. Original vertex p; satisfying

pi= D, D, Cu NGON ()Ne(w)
L J

New vertex p; = p; + d(w, v,w) = X; X; X, i jre Ni(W)N; (0)Ny (w)




Deformation

* A handle-based interface for direct manipulation.

* Input a set of displacement constraints: d; for HU F =

{D1 - Pm}-
* Least squares:
m

E = ; d; — Zl: Z]: Zk 0Cijk Ni(u)N;(v)Ni(w)

After getting c; ;;, the deformed surface is determined.




| _IL\I
O -
l
|
N

NN

Figure 9.13. In the FFD approach a 3D control grid is used to specify a vol-
umetric displacement function (left). The regular placement of grid basis func-
tions can lead to alias artifacts in the deformed surface (right). (Image taken

from [Botsch 05].)



Discussion

* Two drawbacks:
 Displacement constraints cannot be satisfied exactly.
* The placement of basis functions on a regular grid.

* How to support concave region?



Cage-Based Freeform Deformation

* A generalization of the lattice-based freeform deformation

* This cage typically is a coarse, arbitrary triangle mesh enclosing the
object to be modified.




Deformation

* The vertices p; of the original me%h S:

pi = z a1 (py)

=1
n: the vertex number of cage mesh

@;(p;): generalized barycentric coordinates

* Deform by manipulating the cage \gertices c; V— ¢; + 0cy, displacement:

) = ) Scip(i)
[=1
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How to implement ARAP
tetrahedral deformation?



Mappings

Xiao-Ming Fu
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Mappings f:QcRY— R

* mesh-based mapping * meshless mapping

fe(x) = Jtx + b,




Applications

Parameterization Deformation



- Mesh Improvement

Tolg

ICat

Appl

S

Improved results

[Gregson et al. 2011]



All meshes share a common connectivity.
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Application - Learning

3D shape ——> GeometryImage -> Convolutional Neural Net
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Basic requirements

* Foldover-free:

Po
 No realistic material can be
compressed to zero or even Xg
negative volume. < gz T
P1 P2
t
xz \ \

* Flipped elements correspond to
physically impossible
deformation.

* Inverted elements lead invalidity
for following applications, for

Po

example, remeshing. T

A det](f(x)) > 0 » P1

Negative singed area




Basic goal — low distortion

* Distortion
e Rotation: rigid transformation

v'Isometric = conformal + equiareal

1

P

Omin
e Similar transformation

v'Conformal
‘/SCOTL —

— O-max/ Omin

v 8% = max{o,, 4y,

+ scale

« Affine transformation with positive *

determinant

e Our goal
* As Rigid As Possible
* As similar as Possible

P1
01,..., 0g: singular values of J;

D2

P2

Po



Common distortion metrics D (f)

e Common conformal distortion
e | SCM: ZtA (0-1 — 0-2)2
* MIPS: Zt— + =2

01
e Common isometric distortion
 ARAP: ZtAt((O-l — 1)2 + (0-2 — 1)2)

¢ AMIPS: ¥ (2 +2) + (—— )
Zt( o o 5,01 0201
 Symmetric Dirichlet: Y., A, (0% + 07 % + 05 + 05 %)




Formulation

min D(f)

S. t. det](f(x)) > 0,Vx

S(f) =0

S(f) < 0: specific constraints for applications
D(f): distortion metric
M: input mesh or domain

(1)
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Most-Isometric ParameterizationS (MIPS)
[Hormann and Greiner 2000]

* Mapping: a triangle mesh — 2D parameterization region

ft(x) = Jix + b,
Y




MIPS energy

* MIPS energy on triangle t

T
E2fr = 2+ 2 = el = gy
02 Oq t

penalize degenerate triangles

degenerate >  det(J) >0 | E==)  Ejl; = ©

triangle t

a conformal energy

Optimal value when oy = 05



MIPS optimization —min Y, E/ lps ;

([ Y

Initial valid : Randomly pick Update p using : Output valid
mapping a vertex p Newton’s method mapping

D=




MIPS discussion

* Advantage: penalize degenerate triangles

* Disadvantages:
* only for 2D conformal mapping
* easily be trapped by local minimum
* no strong penalization on maximal distortion

MIPS:
5¢on — 15.72
Time: 7.09s
AMIPS:

. =3.96

Time: 1.68s



Maintenance-based methods

* 1. An initial mapping that satisfies the constraints.

e 2. Reduce the distortion as much as possible while not violating the
constraints.

* Parameterizations:
* |nitialization: Tutte’s embedding
 distortion metrics
e Solvers



Complex solvers

* AMIPS: Computing locally injective mappings by advanced MIPS (2015)

* AQP: Accelerated Quadratic Proxy for Geometric Optimization (2016)

* SLIM: Scalable locally injective mappings (2017)

 CM: Geometric optimization via composite majorization (2017)

* AKVF: Isometry-Aware Preconditioning for Mesh Parameterization (2017)
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Bounded distortion mapping [Lipman 2012]

* Goal: explicitly bound the conformal distortion /\

Constraints: 6;°" < K,det (J;) > 0 a, b,
Je = (Ct dt)
(btx> & fi(x) 5 Jtx + b,
bt — ’
non-linear and non-convex bry

T




Rewrite the constraints

B amaxz\/a§+b§+\/c§+d§
]tz(at_l'ct dy bt) 5" < K, det (J,) > 0
de+be ar—ce \/a?+bf—\/c§+d?

Omin =

r < \/a? 4 bf Non-convex

det (J;) > 0 —»\/c§+d§<\/a§+b§
\/CZ +d? < K~ 17~tConvex
‘ T K+1

K—1
SEON < K e \/Ctz-|_d§gK+1\/a§+bL? r; >0 Convex



maximal convex subset

1, < |a? + p? == 1. < a; Convex

Local frame changes, a; changes.
Local frame is also a variable.

Local frame




Optimization

* Objective function: J = (at +c dy— bt)
* LSCM: E = Y, Area(t) - (c¢? + d?) " \det by a—c

. ARAP:E = 5, Area(t) - ((a, — 1)? + b7 + 2 + )
* Optimization:

* Fix the local frame on each triangle: Second-Order Cone Programming (SOCP);
* Update local frame to let b; = 0.

=)\

. =26.98
Time: 4.03s

1. How to choose K?
2. The speed is slow.



Local/global formulation

* Practical Foldover-Free Volumetric Mapping Construction
(PG 2019)



2/

»> Problem

|

Foldover-free
volumetric map

J {

Initial
volumetric map

{ Source tetrahedral mesh ] {

Output

Input



»> Preliminaries

Signed singular value decomposition
Jiw) = U;S;V!, S; = diag(04,0;2,0:3)
Oj1 = 0o 2 |al-’3|.
Foldover-free constraints
detJ;(w) >0,i=1,--,N © 7,3 >0

Conformal distortion
t(J;(u)) = 0;1/0i5
Bounded conformal distortion constraints
1<t(J;(w)) <K



»> Constraints 09

Foldover-free Bounded conformal
constraints distortion constraints

Oj 3 > O, T(]i) — O-i,l/o-i,?)
detJ;(u) >0 Oi1 = Ojp = ‘O-i,3‘

K = max t(/;
i:l’...’N (]l)

t(J;) 2 1,0,3>0,0;3 >0

It Is difficult to satisfy the constraints!



»> Our 1dea

30

1<t(J;(w) <K

Alternatively solving K and u

o Update K: generate a conformal distortion bound,

o Update u: project the mapping into the bounded
distortion space;

o |If there are foldovers, go to Step 1;

Input:

Initial mapping

Update bound K

Update vertices u

Output:

Foldover-free
mapping




»> Update vertices u

Monotone projection

muin E; = ||]i@ —||12:,

i=1,- N

Au = b.

#; = {H;|1 < ©(H;) < K}. bounded conformal distortion space.

Local-global solver



»> Update vertices u

37

= Local-global solver

-~

Local step

~

FiXx u and J;, solve H;

i=1,--,N
S.C. Hl'Ej'[i,l'Z]_,'",N,

"

min  E, = Z 17, (w) — H,l12,

/

-

Global step

~

FIX H;, solve u

min  E, = 2 1 (w) — H; 12,

i=1,--N

s.t. Au=5>b

"

/

Very slow convergence...



»> Update vertices u .

= Anderson acceleration method [Peng et al. 2018]

ar log(Ey)

No acceleration

With acceleration

-14 =
Nl 2
20 ‘ o

-26 |~ | S5




34

»> Why update bound K?

AR

> R,

FaWA )A &Vorof@ms.»«wmu
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v 4‘A‘A'0»‘Aﬂﬂsﬂ‘
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»> Update bound K 35

= Bound generation

1900
Knew = gK #foldover
1700
1500

1300

1100

[; - ZZ 900
Initialize K = 4 700

500

300

100

-100




»> Post-optimization 36

= Apply a maintenance-based method

Before post-optimization  After post-optimization

Average / maximum Average / maximum
Source tetrahedral mesh conformal distortion: conformal distortion:
2.721107.10 2.08 /22.61



»> Recap of our algorithm

37/

Elimination Process :
alternates in each round:
- generate conformal distortion bound

- try to project the mapping into the bounded distortion space
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Affine transformation

Key observation: the parameter space
is a 2D triangulation, uniquely defined

by all the
on the triangles.

Edge assembly constraints:
Ai(vg —vp) = Aj(va — Vp)



Key idea

e disassembly + assembly

* Treat affine transformation as
variables

* Unconstrained optimization




Unconstrained optimization problem

Disassembly: project initial Assembly: unconstrained

A? into feasible space. optimization.
Eqssempbiy: summation of squares of edge,
assembly constraints.

min ass y C m
E.: Barrier function on distortion
Ecr + UEm & E,,: users’ designed energy
Ak+1 = min| Ay - Max ’ —, 1), Amax
Eassembly,k

1. Egssempiy dominates the energy, approach zero;
2. Amax: avoid large distortion.
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Spherical Parametrizations

Xiao-Ming Fu
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e Curvature flow
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Spherical Parametrizations

* Homeomorphic mapping between a genus-0 closed surface to a sphere

* |f the surface is represented by a triangle mesh, each triangle is projected to a
spherical triangle
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Applications

* Correspondence

* Morphing

* Remeshing

original

spherical parametrization

octahedral parametrization



Constraints

S

=55

e
S

2<2s

B fw\.:nn; =,

x% +y% + 2% =7r?
Non-linear, non-convex

e
LS

(Vp)
i) %))

)
= £
S«
" - c
S c g O
O S 3 pu
o o) @)
(q0) (D)} |O +
O > o= B2
[ i’ O
O o 3
- ) =
o I e O
(g (an)] —
[ ) o [ )



Challenge

* No Tutte’s embedding method

* Non-linear, non-convex optimization problem.

Very challenging!!!
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Hierarchical scheme pipeline

Inout: Output:
: DUt - Decimation > Refinement ~——»  Atriangular
A triangle mesh sphere

15477 5869 2000 1000 500 4 50 500 8000 15477



Hierarchical scheme pipeline

Inbut: Output:
: DUt -  Decimation >  Refinement ——  Atriangular
A triangle mesh sphere

15477 5869 2000 1000 500 4 50 500 8000 15477



Decimation

Edge Collapse
—

<+
Vertex Split




Curvature error metric (CEM)

C glvj)

T do (Vi) p (Vi)
* g(V;) is the Gaussian curvature at V;
2
* de(Vij) = e(dVij)=6), d(Vy;) is the valence of V;

Cr(f)
P(Vk]) = Zf €Q(Vi;j) 2xir(f)




Refinement

* Insert a new vertex on sphere

Such sphere kernel is non-empty !



Paper: Advanced Hierarchical Spherical Parameterizations

Hand Decimation

#vertices
#triangles




Flat-to-extrusive decimation strategy

Once an approximate surface has
been spherically parameterized, the
details of the input surface can be
refined easily.

The shape contains highly curved
areas at the beginning of
refinement, it is hard to make the
vertices evenly.

A flat-to-extrusive mesh decimation
scheme, first simplifies the flat
regions by QEM and then the
extrusive regions by CEM.




Depression illustration

e Long and thin triangles (r=d) may block the next vertex insertion.

PN Make the vertices evenly distribute
@ over the sphere as much as possible.

It is easier to insert the later vertices.




Flexible group mesh refinement

* Group insertion

 Distortion control: iteratively insert vertices until the maximal distortion
exceeds a threshold.

* Global optimization: reduce distortion.

* Former methods optimize the vertices after inserting fixed number of
vertices.

* [Praun and Hoppe 2003], [Peng et al.2016], [Wan et al. 2012]

* This group scheme is much more robust and efficient.



Global optimization

n(f) x Area(St) = 4nr?

* We want to make the vertices evenly distribute on the sphere

* The ideal tetrahedron T
e Sis a equilateral triangle
* The area of spherical triangle St is decided by the current face number
* Use spherical excess to compute dihedral angle
* Use Cosing Law to compute the angle 6 {

0

* Optimizing the tetrahedral mesh
* Tetrahedron: formed by mesh triangles and coordinate origin
* Inexact block coordinate descent

* Only the topology information of origin mesh is used during the
global optimization.



Global optimization energy

* 3D AMIPS energy:
1 112
EF™ = < (Wl - [l = D
EYO = %(det]i + (det/)™)

Eiiso _ %(Eicon n EiVOl)

El* = exXp ((Eiiso)s)
.« g — lnl;ln: ’ (EiiSO)S<T

* Volume-based energy significantly improve the robustness of our refinement
process.




Triangle-based failure cases

N Narrow and long triangle
N make it hard to insert
new vertex




Post optimization

* Rigidly transfer each triangle t; of original mesh to t; on the sphere
* Form tetrahedron T; by the origin and three vertices of t;

* Use AMIPS energy to optimize T; toward ﬁ

Before optimization After optimization



Results

(3.615.07,8.78s) 10999

13206

'/ i

(3.70,9.28,15.45s) 9490 (7.26,19.32,24.6




Outlines

* Definition & Applications

* Hierarchical method
* Paper: Advanced Hierarchical Spherical Parameterizations

* Two hemispheres
e Curvature flow



Pipeline

Partition M into two balanced sub-meshes.

Embed each sub-mesh 1n a planar disk using the
barycentric method with weights w.

Combine the embeddings of the two submeshes

into one planar embedding using Moebius 1nver-
s10n.

Use 1nverse stereo projection to obtain a spherical
embedding.




¥ l
n

‘u'-'.:
'!:".M'A 5

'a. &

Figure 1. Stages in generating a spherical embedding for the gargoyle model (using uniform weights): (a) Par-
tition into two sub-meshes using MeTiS. (b) Planar parameterization of the sub-meshes. (¢) Combined planar
embedding (with zoom); (d) Initial spherical parameterization generated by inverse stereo projection (with
zoom) (f) final result after projected Gauss-Seidel and local Newton iterations (with zoom).




Improvements

* How to cut?
* MeTiS graph partitioning package: obtain a balanced minimal vertex
separator of the mesh graph.
* How to map the planar parameterizations onto the sphere?
* Moebius inversion f(z) = 1/conj(z)
* This maps the interior of the unit disk to its exterior.
* Mapped to the unit sphere using the inverse stereo projection.

1

P(u,v) =
(v,7) 14+u” +v

> (214,,2\/,1—@12 —vz)




More papers

* Connectivity Shapes

e Spherical Parameterization Balancing Angle and Area Distortions,
TVCG 2017



Outlines

* Definition & Applications

* Hierarchical method
* Paper: Advanced Hierarchical Spherical Parameterizations

 Two hemispheres
e Curvature flow



Calabi flow

* Calabi energy: it is squared difference between current curvature
vector and target curvature.



Mean curvature flow



Surface Mapping

Xiao-Ming Fu



Outlines

e Definition
* Application

e Algorithms
e Common base domain
e Parameterization-based method



Outlines

e Definition
* Application

* Algorithms
e Common base domain
e Parameterization-based method



Surface Mapping

Inter-surface mapping, Cross parameterization

* A one-to-one mapping f between the two surfaces M, and M;




Compatible meshes

* Meshes with identical connectivity
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Applications

* Morphing
e Attribute transfer




Applications

* Morphing
e Attribute transfer










INnputs

* Two (n) models and some corresponding landmarks




Goal

ion and low distortion

lject

°B




Outlines

e Definition
* Application

* Algorithms

e Common base domain
e Cross-Parameterization and Compatible Remeshing of 3D Models

e Parameterization-based method



Algorithm stages

e Construct a common base domain
» Topologically identical triangular layouts of the two meshes.

 Compute a low distortion cross-parameterization
* Each patch is mapped to the corresponding base mesh triangle.

* Compatibly remeshes the input models using the parameterization



Common base domain
Topologically identical triangular layouts

* Incrementally adding pairs of matching edge paths between feature
vertices.

Algorithm PathMatch
M,'= Ms
M,"= M,
Compute the shortest paths s” for each pair of vertices in V;
Compute the shortest paths # for each pair of vertices in V,
ST=O
foreach s’
ST < <s”,#> /* pairs of matching paths */
while ST = &
< s,t> =ST.RemoveShortest()
if NonBlocking (s, 1)
Add s to P;; Addtto P,
Remove all interior vertices of s from M,’
Remove all interior vertices of ¢ from M,’
Update(ST, s, t)
end
end
end

a pair of paths with the
smallest length sum




Cross-Parameterization

* Tutte’s embedding:

Given a triangulated surface homeomorphic to a disk, if the (u, v) coordinates
at the boundary vertices lie on a convex polygon in order, and if the coordinates
of the internal vertices are a convex combination of their neighbors, then the
(u, v) coordinates form a valid parameterization (without self-intersections,

bijective).

* Each patch is a triangle, i.e., it is a convex boundary.
* Bijection guarantee.



Cross-Parameterization

f=fitofseofs




Compatible Remeshing

* First remeshes the target model with the connectivity of the source mesh
* Perform smoothing and refinement

High approximation error

(b) Initial projection
(c) After smoothing
(d) Smoothing and refinement




Disadvantages

* The construction of common base domain is non-trivial.

* The distortion of surface mappings is not optimized directly.



Efficient Optimization of Common Base
Domains for Cross Parameterization 2012

* Initial Base Domain Construction (previous method)

* Boundary Stretching
e curve stretching operator is to convert a curve into a geodesic curve locally

* Boundary Swapping
 Similar to edge flip

* Patch Merging

* helps reduce the distortion



Boundary
Stretching

0o
=
o
Q
@
=
wv

Swapping




Outlines

e Definition
* Application

* Algorithms
e Common base domain
e Parameterization-based method



Algorithm steps

e (a) Cutting to disk topology.
* (b) Computing the joint flattenings @, V.

* (c) Bijection Lifting.




Cutting paths

* Bijective correspondence
* Shortest path
* Minimal spanning tree




Computing ®, ¥

* Constraint
e Common boundary condition
* Locally injective

e Solvers:
e Former methods




Bijection Lifting

* Bijective parameterizations




Bijection Lifting

* Only locally injective constrains




Bijection Lifting

* Only locally injective constrains







Disadvantages

e Cut-dependent




Seamless Surface Mappings
SIGGRAPH 2015







More methods

* Inter-Surface Mapping, 2004

* Functional Maps: A Flexible Representation of Maps Between Shapes,
2012

* Hyperbolic Orbifold Tutte Embeddings, 2016
* Variance-Minimizing Transport Plans for Inter-surface Mapping, 2017



Morphing

Xiao-Ming Fu



Outlines

e Definition
* Angle, length, area, volume, and curvature

* Example-Driven Deformations Based on Discrete Shells

* Affine transformation
* As-Rigid-As-Possible Shape Interpolation

e Data-driven morphing
* A Data-Driven Approach to Realistic Shape Morphing
* Data-Driven Shape Interpolation and Morphing Editing



Outlines

* Definition
* Angle, length, area, volume, and curvature

* Example-Driven Deformations Based on Discrete Shells

* Affine transformation
* As-Rigid-As-Possible Shape Interpolation

e Data-driven morphing
* A Data-Driven Approach to Realistic Shape Morphing
* Data-Driven Shape Interpolation and Morphing Editing



Definition

* Morphing is a special effect in motion pictures and animations that
changes (or morphs) one image or shape into another through a
seamless transition.




Definition

* Problem: Given , VI, and , how to compute the shape V/"?
*t € |0,1], interpolation
*t & |0,1], extrapolation







Requirements

* Look naturally and intuitively

* Symmetry

* Smooth vertex paths

 Bounded distortion / low distortion
* Foldover-free

* Large deformation



Some methods

* First interpolate some values/metrics, then reconstruct the shape.

* Angle, length, area, volume, and curvature
* Example-Driven Deformations Based on Discrete Shells

e Affine transformation
* As-Rigid-As-Possible Shape Interpolation

e Data-driven morphing
* A Data-Driven Approach to Realistic Shape Morphing
e Data-Driven Shape Interpolation and Morphing Editing



Outlines

e Definition

* Angle, length, area, volume, and curvature
* Example-Driven Deformations Based on Discrete Shells

* Affine transformation
* As-Rigid-As-Possible Shape Interpolation

e Data-driven morphing
* A Data-Driven Approach to Realistic Shape Morphing
* Data-Driven Shape Interpolation and Morphing Editing



Interpolation

Angle, length, and volume
£ =01 -1 +tl}
ot = (1 —-1)8) + to}
VE=01 -0V + ¢tV

l.: edge length
0,: dihedral angles
V:volume

|
Vzgzorixxj)-xk

fijk



Reconstruction

* A mesh with prescribed edge lengths and dihedral angles does not

exist.
=3 2(1 — 15)?
Fq 22(9 00’

—(v %
= AEZ + qub + VE



Figure 6: Interpolation of an adaptively meshed and strongly twisted helix with blending weights 0, 0.25, 0.5, 0.75, 1.0.



Outlines

e Definition
* Angle, length, area, volume, and curvature

* Example-Driven Deformations Based on Discrete Shells

e Affine transformation
* As-Rigid-As-Possible Shape Interpolation

e Data-driven morphing
* A Data-Driven Approach to Realistic Shape Morphing
* Data-Driven Shape Interpolation and Morphing Editing



Interpolation

* How to define A(t) reasonably?

e Simplest solution:
Alt) =1 —-t)I + tA

* More elaborate approaches:
* Singular value decomposition
A=UzV?T
A =U@®(A = +t2)VT(¢)
* Polar decomposition
A=UzVT = VzVT = RS
A() = R(®((1 =) +tS)
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Reconstruction

* Least squares:

E=) I/ -AW®I}
4

Figure 12: Morph between photographs of an elephant and a giraffe.




Outlines

e Definition
* Angle, length, area, volume, and curvature

* Example-Driven Deformations Based on Discrete Shells

* Affine transformation
* As-Rigid-As-Possible Shape Interpolation

* Data-driven morphing
* A Data-Driven Approach to Realistic Shape Morphing
* Data-Driven Shape Interpolation and Morphing Editing



Data-driven approach

* Problem:

* |nput: a database with various models belonging to the same category and
containing identical connectivity

* Given source and target models, how to utilize the database to generate the
morphing?




Two stages

e Offline stage
* Analyze the model database to form local shape spaces that better
characterize the plausible distribution of models in the category.
* Online stage

* When the source and target models are given, we find reference models in
the local shape spaces and use them to guide the as-rigid-as-possible shape
morphing.



More details

e Offline stage
* Define distance between pairs of models

* Online stage
* Find a minimal distance path connecting the source and target models
* In-between reference models, do as-rigid-as-possible shape interpolation.



Distance Measure

. -2
n A |
k=1Hvk Uk ”
\ n

vi: the k" vertex of the it"* model (M;).

n: the vertex number of the model

Ci(Ml,M]) —

Pre-alignment: align models in a database using rigid transforms with
the known correspondences.



Morphing

e Path Optimization
» Shortest path (see more complex algorithm in the paper)

* Interpolation
Ng €= The number of models on the generated path.

E = z Wk(t)Ek
k=1
n

Ek:z< > wyll0" =97) = Rk = v)II” +v]o* —ka2>

i=1 \jeQ()

k—1
Np—-1

wy (t): exp(—e|t — t|) where t;, =
Solver: Local/global



Point set registration

Xiao-Ming Fu



Point set registration

* The process of finding a spatial transformation that aligns two point
sets.




* The purpose of finding such a transformation includes merging
multiple data sets into a globally consistent model, and
to a known data set to identify features or to

estimate its pose.




Problem

* Input: two finite size point sets {P, @}, which contain M and N points.

e Qutput: a transformation to be applied to the moving “model” point
set P such that the difference between P and the static “scene” set Q
IS minimized.

* The mapping may consist of a rigid or non-rigid transformation.
* Rigid registration: translation and rotation
* Non-rigid registration: affine transformations or any nonlinear transformation

For example: Spline



Challenges

* No correspondences.
* Noisy point cloud.




iterative closest point (ICP)
https://en.wikipedia.org/wiki/lterative closest point

* 1. Vp; € P, match the closest point
in (), denoted as q;

2. Estimate the rigid transformation
that aligns the corresponding points
as much as possible.

* 3. [terate above two steps.




Estimation of rigid transformation

* Error:

ECP,Q = ) lipi— aill

(ri,.9i)
Compute rotation R and translation t:

E(P,Q) = ) IIRpi +t - gl

(pi,4i)



Analytical solution

1 1
* Define Hp = l 1 pu Hg = l 1 4qi

E(P,Q) = ZIIRpi +t—ql?

n

1=1
= > IR+t —q,

l;1

— ZHR(pi I .up) I (Qi I .uq) T

=1



Analytical solution

Since:

G

EnR(n i) = @~ Il + | |
+2( )(R(pl n“p) (qi — qu))
iz( )T(R(pl n“p) (q; — .“q))
= 2 )Z(R(pl o) = (@ — 1)
o (ZR(pl ) - Z<ql )=t



Analytical solution

E(P,Q) = ) [IR(pi — 1) = (@i = ) + | |
=1

No matter what R is got, sett = —Rpu, + .
Thus,

E(P,Q) = Z\\R(n pp) = (@ = 1)l
Z(pl i) 77 (o = 1) + || @ = I = 2(a — 1) R(pi — i)

i71

= (e =) (=) + 1l = ) = 2= ) R = )



Analytical solution

argmin E(P, Q)
R n

= arg mRinz _ Z(qi B .Uq)TR(pi
i=1



Analytical solution

e If M is a positive-symmetric-definite matrix then for any orthogonal R,
tr(M) > tr(RM).

 Proof: Set M = AAT
tr(RM) = tr(RAAT) = tr(ATRA) = Z o’ (Ray)

Schwarz inequality: a; (Ra;) < \/aiTai(aiRTRai) =aa; = tr(M)



Analytical solution

* Denote H = Y1, ((pi — 1) (q; — ,uq)T) = UV’

Solve arg max tr(2RH).

SetX =VUT,
Then, XH = VT

For any orthonormal matrix B,
tr(XH) = tr(BXH)

Thus,
VUT =X = arg max tr(2RH)



Atlas generation

Xiao-Ming Fu



Outlines
e Definition

* Mesh cutting

e Chart parameterization
* Bijective, low distortion

* Chart packing



Outlines
e Definition

* Mesh cutting

e Chart parameterization
* Bijective, low distortion

* Chart packing



Texture Mapping

* Texture mapping is a method for defining high frequency detail,
surface texture, or color information on a computer-generated
graphic or 3D model.







Atlas

* Requires defining a mapping from the model space to the texture space.

mapping

Model Space Texture Space




Generation process




Mesh Cutting

* Low distortion
* As short as possible length

(@) (4.07/1.28/0.37)  (b) (4.78/1.13/0.12)




Seams introduce filtering artifacts

High-resolution texture



Parameterizations

* Bijective

 Low isometric distortion




Packing

* High packing efficiency

PE = 35.8%
BL = 21.24
CN = 26




Packing

* High packing efficiency

PE = 85.0%
W & BL = 11.45

BL = 6.34 CN = 13
E4 = 1.040 - Eq =1.030

Input v Result




Applications

* Signal storage

* Geometric processing




Outlines
e Definition

* Mesh cutting

e Chart parameterization
* Bijective, low distortion

* Chart packing



Mesh cutting

* Points — Paths
* Segmentation




Distortion points
Geometry Images, SIGGRAPH 2002

* lterative method
e Parameterize the mesh to the plane.
* Add the point of greatest isometric distortion.




More methods

* Spanning tree seams for reducing parameterization distortion of
triangulated surfaces, 2002

e Sphere-based cut construction for planar parameterizations, 2018



Segmentation
D-Charts: Quasi-Developable Mesh Segmentation, EG 2015

* Goal: mesh segmentation into compact charts that unfold with
minimal distortion




Proxy

* Devlopable surfaces of constant slope
e Constant angle between surface normal and axis
* Proxy: < axis,angle >, < N,, 08, >

7/
\




Fitting error

* Measures how well triangle fits a chart
F(C,t) = (N, -n; — cos8,)?

* Combine with compactness

2
CC.0) = nD(S,,t)

Ac

v'S. is the seed triangle of the given chart
v'D(S,, t) is the length of the shortest path (inside the chart) between the two triangles
v A, is the area of chart C

e Cost function
Cost(C,t) = A, F(C,t)*C(C,t)*



Segmentation method

* Lloyd algorithm

e 1. Select random triangles to act as seeds

e 2. Grow charts around seeds using a greedy approach
* 3. Find new proxy for each chart

* 4, Repeat from step 2 until convergence

* K-means
e CVT



Algorithm overview

Hole
Filling

Post-Processing
&
Parameterization




Bounded Lloyd iterations

* Initialization
 Random / Furthest point seeds
* Compute initial proxy

* Bounded Growing/Reseeding iterations
* Termination




Bounded Lloyd iterations — Growing

* Use greedy approach
* Prioritize by Cost(C,t)

* Bound Fitting Error

* Guarantee (nearly) developable charts
« F(C,t) < Epgx



Bound Lloyd iterations — Reseeding

* Find new proxy

. 1
JI\EgiA_CZtECAtF(C' t) S.T. “NC” =1

* Find new seed
* Minimal Fitting Error

* Close to center of chart

* To find such seeds, we examine the first k triangles in the chart with minimal
fitting error (k = 10 in all our examples), and then select the one closest to
the center of the chart.



Algorithm overview

A¥ Bounded [
i§al Lloyd
ll iterations

Hole
Filling




Hole filling

* Bound on Fitting Error
* Unclassified triangles

* Fill holes
e Large holes - New proxy
* Small holes — Grow neighbors




Algorithm overview

Hole
Filling

A% Bounded [&
; Lloyd
ll iterations




Merging

* Broaden set of captured developable surfaces
* Reduce number of charts




Algorithm overview

Hole
Filling

Post-Processing
&
Parameterization




Post processing

 Straighten boundaries

e Darts/Gussets relax stress
* Add seams toward high error regions

* Verify disc topology
* Parameterization



Outlines
e Definition

* Mesh cutting

e Chart parameterization
* Bijective, low distortion

* Chart packing



Bijection

* Preserving orientations

* No intersections of boundary




Barrier
Bijective Parameterization with Free Boundaries, SIGGRAPH 2015

* For each boundary edge with vertices U1, U2, we associate a barrier
function:

2
E
O) . _1
maX( dist(Uy, Uy, Up) )

where, dist(U4, U,, U;) measures the distance from a boundary point
U;»1 to the edge (Uq, U,).



Scaffold

Simplicial Complex Augmentation Framework for Bijective Maps, SIGGRAPH Asia 2017




Outlines
e Definition

* Mesh cutting

e Chart parameterization
* Bijective, low distortion

* Chart packing



Atlas Refinement with
Bounded Packing Efficiency

Hao-Yu Liu, Xiao-Ming Fu, Chunyang Ye, Shuangming Chai, Ligang Liu
ACM Transactions on Graphics (SIGGRAPH) 38(4), 2019.






Packing Efficiency (PE)

Maximizing atlas packing efficiency is NP-hard!
[Garey and Johnson 1979; Milenkovic 1999]



High Distortion

S /\ ¥
A g |

Low Distortion




Other Requirements

e Low distortion
* [Golla et al. 2018; Liu et al. 2018; Shtengel et al. 2017; Zhu et al. 2018]

* Consistent orientation

* [Floater 2003; Tutte 1963; Claici et al. 2017; Hormann and Greiner 2000;
Rabinovich et al. 2017; Schuller et al. 2013]

* Overlap free
* [Jiang et al. 2017; Smith and Schaefer 2015]

* Low boundary length
* [Li et al. 2018; Poranne et al. 2017; Sorkine et al. 2002]

These methods do not consider PE!



Atlas Refinement

No overlap
High PE




Previous Work

Box Cutter [Limper et al. 2018]

No guarantee for a high PE result!



Motivation



Packing Problems

q o

ﬁ

Irregular shapes Rectangles
Hard to achieve high PE Simple to achieve high PE
Widely used in practice



Axis-Aligned Structure

Axis-aligned structure Rectangle decomposition High PE (87.6%)!



General Cases

Axis-aligned deformation ﬁ

Not axis-aligned Axis-aligned
Higher distortion



Distortion Reduction

—

-

[ | 1

L]

ScanoId—basedJmetn

jiang et al. 20117]

Distortion reduction

od

Axis-aligned No overlap & High PE

High distortion

High distortion

4

No overlap & High PE
Low distortion
Bounded PE



[]

Axis-aligned deformation

Rectangle
decomposition
and packing

Pipeline




Axis-Aligned Deformation
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Axis-Aligned Deformation

Direction vector
Ambiguous rotating directions




Axis-Aligned Deformation

Polar angle

: : : Success!
Clear rotating direction



Axis-Aligned Deformation
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Axis-Aligned Deformation

* Energy of boundary alignment

Rotate polar angle Keep length
1 JIA 2 1 li
Eedge(bi) = 51 =7) (9i — E@i) oY (@ - 1)
Np

1Y
Ealign(€) = E l_loEedge(bi)

=1



Axis-Aligned Deformation

* Energy of isometric distortion(symmetric Dirichlet)

1 Area(f;) , 110
Eq(o) = 12 areaquies (VillE + 7 1E)
fiEFC

Keep low distortion and orientation consistency.



Axis-Aligned Deformation

mCi n Eq(c) +4E align (c)
s.t. det J; > 0, Vi
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Rectangle Decomposition and Packing

The faces are all rectangles.
But the number is too many.




Rectangle Decomposition and Packing

* Motorcycle graph algorithm

-

ISl

1

)

Scor

]

PE 87.0%

Score

0.688

83.6%
0.659

T
|

84.4%
0.658




Distortion Reduction

Isometric
energy

min Eyeduyction = Eq(C)|+HEPE(C)
- ;.. : Barrier function
s.t. @ ISM of PE bound

Scaffold-based method
[Jiang et al. 2017]
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PolyAtlas: Atlas Refinement with
Bounded Packing Efficiency

Submitted to ACM SIGGRAPH 2019
ID: 339



PolyCube

Xiao-Ming Fu



Outlines

e Definition

e Deformation-based method
* All-Hex Mesh Generation via Volumetric PolyCube Deformation

* Voxel-based method
* Optimizing PolyCube domain construction for hexahedral remeshing

* Cluster-based method
* PolyCut: Monotone Graph-Cuts for PolyCube Base-Complex Construction

* Generalized PolyCube



Outlines

e Definition

e Deformation-based method
* All-Hex Mesh Generation via Volumetric PolyCube Deformation
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PolyCube:
1. Compact representations for closed
complex shapes

2. Boundary normal aligns to the axes.
3. Axes: (+£1,0,0)7, (0, +1,0)7, (0,0,+1)7.
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PolyCube-Map f:
1. A mesh-based map.
2. Foldover-free and low distortion.
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Application — All-hex meshing

Tetrahedral Mesh PolyCube All-Hex Mesh

Applications based on PolyCube:
1. All-Hex Mesh generation.

2. Texture Mapping [Tarini et al.
2004].

3. GPU-based subdivision [Xia et
al. 2011].
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Application — Seamless texture mapping

Figure 1: Cube maps can be used to seamlessly texture map an ap-
ple (left). In this case, the 3D texture domain 73 1s the surface of
a single cube that is immersed in the 3D texture space T° (mid-
dle) and corresponds to a 2D texture domain 75 that consists of six
square 1images (right).

Applications based on PolyCube:
1. All-Hex Mesh generation.

2. Texture Mapping [Tarini et al.

2004].

3. GPU-based subdivision [Xia et
al. 2011].



PolyCube facet, edge, and vertex

PolyCube facet:
share the same label

PolyCube edge:
The edges between facets

PolyCube vertex:
sharing by at least three charts




Sufficient topological conditions

* Any PolyCube facet should
have at least four neighboring
Poly-Cube facets.

* Any two neighboring
PolyCube facets should not
have opposite labels such as
+ X and —X.

* The valence of each PolyCube
vertex is three.
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Rotation-driven deformation

* Goal: gradually aligns the model’s surface normals with one of the six
global axes, preserving shape as much as possible.

lteration 1 lteration 2 I[teration 3 I[teration 6



Rotation-driven deformation

NU
« . . . ! ! 2
* As-Rigid-As-Possible deformation E = Z w; Z wii||(pf = p}) — Ri(pi — pj)|
* No local step i=1  jeQ(i)
* Rotations are determined by axis-alighment constraints.

* Steps:
* For every surface vertex (except those on sharp features), the minimal
rotation necessary to align each surface vertex normal with one of
+ X,+Y,+Z7.
* quaternion
* Smoothly propagate to feature and interior vertices.
* Laplace equation per quaternion component
e Solve E.

* Least squares.



Labeling

1. Label surface triangles according to the closest
axis

e 2. Group similarly labeled triangles into charts.
3. Straighten chart boundaries.

ﬁ

* 4. remove small, spurious charts bounded by at
most two edges




Multi-orientation chart

/W/

/

Opposite sides




Highly non-planar chart

Detect extrema along Three possible Valid cuts are defined as

the chart boundary axis-aligned cut options. those that would not
introduce new charts with
three or fewer neighbors.



Position-driven deformation

Ny
e constrain each chart to an axis- E = z w; z Wij||(P{ - P,') - Ri(pi - Pj)”z

aligned plane. i=1  jeq(i)
e the chart coordinate '




More papers:

* L., -based Construction of Polycube Maps from Complex Shapes (2014)
e Efficient Volumetric PolyCube-Map Construction (2016)
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Pipeline

2. PolyCube construction
and optimization

1. Pre-deformation 3. Mapping computation



Wedge regions

Wedge regions are hard to avoid




Voxelization

Length of cube




Optimization

Pseudo-Polycube  Initial polycube Opt. polveube Opt. polycube Opt. polycube

-—

Q P with E,. with F, with E, + 20E,

Domain simplicity E. + « Geometric deviation E,

Morphological operations




PolyCube volumetric parameterization

Fixed boundary mapp




More papers based on construction

* Computing Surface PolyCube-Maps by Constrained Voxelization (PG
2019)
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[ |. Constrained voxelization ] [ ll. Computing surface PolyCube-Map ]




Constrained voxelization: Formulation

IHéi-HﬁWI“(eG\Dmeer of corners of the PolyCube ]

S.L. dh(-%,éq'lﬂeﬁy,p;-bounded constraint ]

C &7 >[The topological constraint ]




TwoO operators

. H N\
gtasing operatof:
€ VO in intp disjaint cuboids
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Erasing operator Filling operator

e . [P f r\%
Performing one filling aft errorming_(

rasing operator pef

Gh ual domain




Erasing-and-filling Strategy

Input

[1. Generate the initialization, k = 1 )

2. Perform one erasing operator
without violating the constraints

3. Perform one filling operator
without violating the constraints

K4.k:k+1,gotostep2 )




Erasing-and-filling Strategy

Order | Order Il Order Il
N(C)=72 N(C)=72 N(C)=72

[ Our developed erasing and filling operators are effective and robust ]
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Input:
A source mesh &

G pre-axis-aligned shape )

Algorithm workflow

e

Output:
PolyCube-map

J

Pre-axis-aligned Constructed Optimized
shape A PolyCube C guad mesh Q

[ |. Constrained voxelization ]

Segmentation S

PolyCube-map f

[ Il. Computing surface PolyCube-Map ]




PolyCube-Maps computation

4 )
1. Optimize a new quad mesh

\ S

[ )
2. Segment the triangular surface into a set of submeshes

\\ S

[3. Map each submesh onto one PolyCube chart




Quad mesh optimization

Requirements

1. Preserve the give

2. All edge lengths a

3. All interior anc

[
[
[
[

4. Almost no flipped g

\ ]

Anderson accelergtioh [Péng et al. 2018]



Segmentation and map computation

AMIPS m d et
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— chart F// submesh
PolyCube <« Quad mesh > Triangular surface

[Same connectivity] [ Shape preserving ]
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Pipeline

PolyCut Segmentation PolyCube Extraction & Mapping

L

\_ a. Initial Labelling h. Discrete Optimization/ e c. PolyCube d. Parameterization
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Definitions — Thinking from topology

(b) (c)
Generalized The wrench model; (b) The conventional poly-cube (CPC); (c) The generalized

poly-cube (GPC) as raph; (d-e) The cuboid edges are overlaid onto the model to visualize the GPC
global structure.




More examples




Difference

e Conventional PolyCube:
* A shape composes of axis-aligned unit cubes that abut with each other.
* Unit cubes as the building block.
* All cubes are glued together and embedded in the 3D space.

* Generalized PolyCube:
* A shape composes of a set of cuboids glued together topologically.
* Topological simplicity and elegance.



Paper: All-Hex Meshing using Closed-Form
nduced Polycube

Cut faces Frame field Deformed  PolyCube
cut mesh



Rotation
https://en.wikipedia.org/wiki/Rotation

* A rotation is a circular movement of an object around a center (or
point) of rotation.

* A three-dimensional object can always be rotated around an infinite
number of imaginary lines called rotation axes.

* A rotation is a rigid body movement.



2D rotation

cos@ sin6b

tR= [—Sine cosB




Complex view

e 7' = el

* z' has the same length as z.
« z' is rotated by 6 degrees.




Euler angles

* The Euler angles are three angles introduced by
Leonhard Euler to describe the orientation of a
rigid body with respect to a fixed coordinate

system.

* Any orientation can be achieved by composing
three elemental rotations, i.e. rotations about the
axes of a coordinate system. Euler angles can be
defined by three of these rotations.




Quaternion
https://en.wikipedia.org/wiki/Quaternion

*Form:q = a + bi + ¢j + dk
* a,b,c,d are real numbers
* i,j, k are the fundamental quaternion units
« i’ =j?=k*=ijk=-1
e Componentwise addition
* (a; + byi + c;j +dk) + (a, + byi+ c,j +dyk) = (a; +a,) + (by +



Quaternion
eij = k,ji=—k;jk=ikj=—iki=j ik =—j.

* Multiplication (Hamilton product)
(a1 + bli + Clj + dlk)(az + bzi + Czj + dzk)
— al(az + bzi + C2j + dzk) + bli(az + bzi + C2j + dzk)
+ Clj(az + bzi + Czj + dzk) + dlk(az + bzi + C2j + dzk)
— alaz - b1b2 — C1C2 — d1d2 + (albz + b1a2 + Cle - d]_CZ)i
+ (a;c; — bidy + cia, +diby)j + (a1d, + bicy; — c1by + dqay)k

noncommutative



Conjugation, the norm, and reciprocal

* Conjugation:
*q"=a—bi—cj—dk

* Norm:
* llqll = /qq* = Va? + b2 + c? + d?

e Reciprocal:

[ J _1 f— q_*
q TIE



Unit quaternion

* Because the vector part of a quaternion is a vector in R3, the geometry of
R3 is reflected in the algebraic structure of the quaternions.

* A single rotation by a given angle 6 about a fixed axisu = xi + yj + zk
* An extension of Euler's formula:

6, . .
o g = e2¥THYIHE) cos% + (xi + yj + zk) sing
* The desired rotation can be applied to an ordinary vector p = p,.i +
PyJ + p-k
*p' =qpq’

cql=gqg"= cosg— (xi + yj + zk) sing



Unit quaternion < Rotation Matrix
q=w+xi+tyj+zk=M

* Unit quaternion = Rotation Matrix
1—2y%—2z%  2xy+2zw 2XZ — 2yw
M=| 2xy—2zw 1-—2x%-2z% 2yz+2xw
2xZ + 2yw 2yz — 2xw 1 —2x% — 2y*?
* Unit quaternion < Rotation Matrix
Moo Moy Moy
Suppose M = (mm mqq m12>
Mpg Mp1 My
Moo + My + My, =3 —4(x?+y?2+2z4)=3—-4(1—-w?) =—-1+
4w* (ambiguity)
Mo — My = 4ZW; Myg — Moy = 4YywW; Myp; — My = 4xW



Directional Field

Xiao-Ming Fu
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Definition

 Spatially-varying directional information, assigned to each
point on a given domain.

* A field on a domain is the assignment of a directional to each point
in the domain.

* Magnitude + direction
‘Ar'ection
2. Length



Multi-valued field

* Multiple directions per point with some notion of symmetry

* A set of directions or vectors at every point.
* Rotationally-symmetric direction fields (RoSy fields)
N=1,2,4,6
* Four directions with /2 RoSy
* Two independent pairs of directions with m RoSy within each pair.



 Vector fields
 Direction fields

* Line fields

 Cross fields

* Frame fields

* RoSy fields

* N-symmetry fields
* PolyVector fields

 Tensor fields

1-vector field

One vector, classical “vector field”

2-direction field

Two directions with T symmetry,
“line field”, “2-RoSy field”

13-vector field

Three independent vectors, *3-
polyvector field”

4-vector field

Four vectors with /2 symmetry,
“non-unit cross field”

4-direction field

Four directions with /2 symmetry,
“unit cross field”, “4-RoSy field”

22_vector field

Two pairs of vectors with T symme-
try each, “frame field”

22_direction field

Two pairs of directions with 7T sym-
metry each, “non-ortho. cross field”

6-direction field

Six directions with /3 symmetry,
“6-RoSy”

¥ PRI A 5 4 Y <

23_vector field

Three pairs of vectors with T sym-
metry each




Some concrete examples

* Principal directions of a shape
* Stress or strain tensors

* The gradient of a scalar field

* The advection field of a flow

e Diffusion data from MRI



Synthesis or design

* User constraints

e Alignment conditions
* Fairness objectives

* Physical realizations
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Applications
* Mesh Generation




Applications

* All-hex meshing

(b) Impeller

) Hanger




Deformation

* Deformations which are as isometric as possible can be generated
using approximate Killing vector fields.




Texture Mapping and Synthesis

e Seamless texture

Figure 1: Neighboring texels on the surface (left, red/blue
dots) are not neighbors in the atlas (right). To make the seam
invisible, texels have to align across chart boundaries and
their colors have to be duplicated (light colored texels).



Architectural Geometry

* Conjugate directions
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Architectural Geometry

 Self-Supporting Structures
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Tangent Spaces

* The tangent spaces of the a triangle mesh can be located on the faces,
edges, or vertices of a triangle mesh.

* One way to construct a tangent space at a point is to assign a surface
normal vector to the point.

* Face: normal vector
* Vertex and edge: local average of the adjacent triangle normal vectors

* Local coordinate system
* Two orthogonal tangent vectors



Discrete Connections

* Given two adjacent tangent spaces i and J,
we need a notion of connection between
them in order to compare two directional
objects that are defined on them.

* A straightforward discretization of the Levi-
Civita connection is made by “flattening” the
two adjacent tangent planes.

* X;j: angle difference between
corresponding axes




Vector Field Topology — continuous

* A vector field has a singularity at a point p if
it vanishes or is not defined at this point.

* 2D case:
* Parameterized curve: c¢: [0,1] — R?
* A smooth angle function: a:[0,1] - R
* Vector field:

o(e@) = (e (D)

* Define the index (an integer) of the singularity
at p: ,
index,, = - (a(1) — a(0))

Note: Since a is smooth, the difference a(1) —
a(0) is unique and it is a multiple of 2.




Singularity index, = —— (a(l) — a(0))

* The index measures the number of times the vectors along the curve
¢ rotate counterclockwise, while traversing the curve once.

* It is common to consider only points p with index index,, # 0 as
singular.
* It vanishes or is not defined at this point.

Singularity




Singularity

* The definition does not directly extend to surfaces, because there is
no global coordinate system (the tangent bundle is not trivial).

* Calculate the index at a point p of a vector field v on a surface M by
using an arbitrary chart around p.

* A chart for a topological space M (also called a coordinate chart,
coordinate patch, coordinate map, or local frame) is a
homeomorphism from an open subset of M to an open subset of a
Euclidean space.



Singularity

* Poincaré—Hopf theorem: the sum of all the indices of a vector field
equals 2 — 2g for a surface without boundary.

* For N-vector fields, the index is a multiple of 1/N. Some examples:
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Figure 2: Singularities of index %, }1, O (non-singular), —z, —5 Ina
4-vector field. The black curves are the so-called separatrices — inte-
gral curves (cf. Section 10.3) of the field intersecting the singularity.



Discrete Field Topology

* Piecewise constant face-based 1-
direction field
* Constant on face
e Discontinuous on edges

* Extension from continuous setting
* Define rotation between adjacent

triangles to define angle difference

* Itis intuitive to assume that the field
. T .
undergoes a rotation §;; = " clockwise.

* 0;j = % + 21tk would be a valid assumption.



Rotation

* Principal rotation
¢ 511 (S [—TL', TL')

 Summarize all rotation angles on edges
that are incident to the vertex

. 1
* index, = EZ Oij




Period Jumps

* Non-principal rotation:
¢ 511 + 21tk
 k full period rotations

 The values of k are denoted as
period jumps.




Matching - multi-valued field

« N > 1 directionals per tangent space

* An additional degree of freedom:

* The correspondence between the
individual directionals in tangent space
[ to those in the adjacent tangent
space j.
* A matching between two N-sets of
directional is a bijective map f
between them (or their indices).

* It preserves order: f(u,) = v, <
f(Uri1) = Vgiq




Effort

* Based on a matching f, the notions of
rotation and principal rotation can be
generalized to multi-valued fields.

» §;;: rotation between u, and f(u,)
* Effort of the matching f: Y;; = Y72, 67

* Symmetric N-directional field
* §;j = 6j; foreveryr

* The efforts of different (order-preserving)
matchings differ by 2.
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Angle-Based

* Local thonormal frame {e{, e;} on each
tangent space

e 1-direction (unit vector) fields can be concisely
described within each tangent space by a
signed angle @ that is relative to e;.

* Rotation angle:
* 0ij = @j — (@i + Xij + 2mk;j)
* X;j: the change of bases e between the flattened
tangent spacesi andj
* k;;: period jump




Angle-Based N symmetry directions

* Asingle @ representing the set of N
symmetry directions.

« {¢p+1-2n/N|l €{0,..,N —1}}

* Period jump to be an integer multiple

1
o) i
N

* Rotation angle:
* 0ij = @j — (@i + Xij +—kij)




Pros and cons

* Advantage

 Directions, as well as possible period jumps, are represented
explicitly.
* A linear expression of the rotation angle.

* Disadvantage

* The use of integer variables, which leads to discrete optimization
problems.



Cartesian and Complex

* A vector v in a two-dimensional tan§ent space can be represented
using Cartesian coordinates (from R“) in the local coordinate system
{el,e2}, or equivalently as complex numbers (from C).

* Connection to angle-based representation
0= (259) = it
sin ¢
* The change of bases from one tangent space to another

cos X;j —sinXj; i
. ore i
sin X;;  COS Xj;



N-directional fields

* By multiplying the argument of the trigonometric functions, or taking
the complex exponential to the power of N

N CosNgb)_ iNg
v _(sinNgb — ¢
oeiN(pl:eiN(p
‘¢l:¢+l'zﬁn»VlE{0»---'N_1}

e vN becomes a 1-directional field.

* X;j becomes NX;;:
(COSNXU —SinNXij

INX;;
: ore t
sin NX;;  cos NXj; )



Complex Polynomials

* Analogously, every N-vector set {u, ... uy}, in the complex form u; €
C, can be uniquely identified as the roots of a complex polynomial

p(2) =(Z2—Uy) ... (Z — uy).

* Writing p in monomial form, p(z) = };; ¢,z", the coefficient set {c, }
is thus an order-invariant representative of a 1 N—vector.
 N-PolyVector
* A generation of former representation.



Comparison

 Comparing between PolyVectors on adjacent tangent spaces amounts
to comparing polynomial coefficient.

* Every coefficient ¢,, contains multiplications of N — n roots.



Tensors

* Real-valued 2 X 2 matrices in local coordinates
T (T11 T12)
Ty1 Ty

* Symmetric Tensors

* an eigen-decomposition T = UAUT

» A = diag(A4, 4, ), two real eigenvalues

* U = |uq,u,], two (orthogonal) eigenvectors with ||u;|| = 1

* Since eigenvectors are only determined up to sign, a rank-2 tensor

field can in fact be interpreted as two orthogonal 2-direction fields
i Uj.
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Objectives & Constraints

* Different applications
have different
regquirements.

* various objectives can be
used for vector field
optimization

S_\-'mmclry x—\nli—s_\;‘nnnclry

(c) [KCPSI13] (d) [ABCCOI13]

Figure 5: Various objectives used for vector field optimization - (a)
alignment to constraints, (b) Killing energy for isometric on-surface
deformations, (c) smoothness (Dirichlet energy) (d) commutativity
with the symmetry/antisymmetry self maps.



Objectives

 Fairness

* measuring how variable, or rather, non-similar, the field is between adjacent
tangent spaces.

* Parallelity
* Orthogonality
* Minimization of curl



Parallelity — as-parallel-as-possible

e Parallel

* The direction in one tangent space is obtained via parallel transport from the
directions in adjacent tangent spaces.

* As-parallel-as-possible goal:
N
Efair—N — 52 We(5e)2
e



An example of cross field

) 2
Efalr Z Zzwe (¢] (¢l +Xl] T+ — l]))

Variables: ¢; and k;; (integers)

Greedy solver:
1. Treat k;; as floating number, minimize E¢g ;4

2. Round the variable which causes the smallest
absolute error if we round it to the nearest intege

3. Repeat above two steps.




Constraints

* Alignment

* fit certain prescribed directions
* principal curvature

 strokes given by an artist on the
surface

* boundary curves
* feature lines

e Soft data term
* Least square

 Hard constraint



Constraints

* Alignment

* fit certain prescribed directions
* principal curvature

 strokes given by an artist on the
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Constraints

* Symmetry:

* If the surface has
bilateral symmetry, it is
advantageous if the
designed directional
fields adhere to the
same symmetry,
allowing field-guided
applications to preserve
the symmetry as well.

Figure 1: Field-aligned parametrization of the knelt human model
using the symmetry field construction method developed in this
paper, and using the MIQ technique of Bommes et. al.[2009].
Red/blue bullets represent field singularities with positive/negative
index. Red lines trace flows of the cross field.




Constraints

 Surface mapping:

* Given multiple shapes with a correspondence between them,
we could require that the directional fields commute with the
correspondence, effectively designing directional fields jointly
on multiple shapes.



Angle error

Woint design: mean=0.15
Mindependent design: mean=0.27

Independent
design

67
0 I.“‘.l.l.l--_
0 02 04 06 08 1 12 14 16
Radians

Figure 12: (left) Independent design on two shapes which are in correspondence does not yield a consistent vector field,
even if compatible constraints are used. (right) Solving jointly using our framework yields consistent vector fields (note the
corresponding locations of the singularities on the back of the shape). See the text for details.




Integrable field

* In most of these applications, vector fields are computed to serve as a
guiding basis for the construction of global parameterizations.

e Parameterization coordinates:
 Defined on vertices
e Two scalar variables

e Gradients of parameterization coordinates are two separate vector
fields.
* Integrable
* Curl-free



Integrable field

* Thinking from a opposite way:

* |f the vector fields are curl-free, it
can be integrated to be
parameterization coordinates.

 Minimize the difference between
the tangent field and the gradient
of the function in the least-
sguares sense.

* Thus, if the curl-free field is
foldover-free and with low
distortion, the parameterization is
also foldover-free and with low
distortion.




Integrability
Circulation: 95L v-dr

e Scalar function h: M —» R
(Vhf'e> = (th,e)

e It trivially follows that (Vhf, e) — (th, e)
is zero for any function h.

* Discrete curl for any vector field a:

+ (az.€) — (ag.e)
e ais curl-free if and only if (af, e) = (ag, e).



Vector field design

ou ouw
ox 0dy ou Ju ov dv

) ) 'ﬁ _( ) )
ov 0Jv dx 0y dx 0y
dx 0y

* Objective:
* Fairness
* Constraints:
e Curl-free

* Foldover-free
 Low distortion




Poisson integration

&

t4E

=
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Extension

* Another question:
e Given a cross field, how to modify it to be curl-free?

* Paper: Computing inversion-free mappings by simplex assembly
E = EC + AEfleld

Efieta —Z( s, e) = (ag.e)” + ((Br.e) = (Bore))”

E.: distortion energy

Increase A to make Ef;;q approach zero



Properties of resulting field

* Non-Orthogonal
* Different lengths

* Frame field




Frame Fields




Frame Fields

* Cross filed (4-RoSy field)
« X =(u,ut,—u,—ut)

* Frame field (24 vector field)
e F =(v,w,—v,—w)

* Canonical decomposition
e F = WX (polar decomposition)
 W: symmetric positive definite matrix




Paper: Frame Fields: Anisotropic and Non-
Orthogonal Cross Fields

e A frame field is said to be continuous/smooth if both X and W are
continuous/smooth.

* Synthesis of frame field:
e Separately design X and W

2
* X: formerly method, e.g., Ergir_4 = %Ze W, (qu —(¢; + X + %Tkij))
* ¥/ Laplacian smoothing, guarantee that the resulting W are SPD.



An example

Constraints Frame field Deformation Neldge]e]fe Anisotropic



Paper: Frame Field Generation through Metric
Customization

* Generic frame fields (with arbitrary anisotropy, orientation, and sizing)
can be regarded as cross fields in a specific Riemannian metric.

* First compute a discrete metric on the input surface.

No metric customization

With metric customization




22 directional field

Paper: General Planar Quadrilateral Mesh Design Using Conjugate Direction Field

e F ={(v,w,—v,—W)
* |lv]l = lw]
* Equivalent classes using permutation
 (V,W,—V,—W)
 (W,—v, —W, D)
 (—v,—W, v, W)
e (—wW,v,W, —D)

 Signed-permutation matrix group G

((1) (1))’(—01 (1))'(_01 _01)'(2 _01)




Smoothness of 22 directional field

* Transformation between adjacent faces
[vlwr | = [vglwg [Py

i Smoothness measure
* closeness from Pfg to G

* Erg = Xi(H(Prgli]) + H(PrgliiD) +
i ((Pfg[" (12 = 1) + (Prglis12 - 1)2) +
(detPry —1)°

* H() = niny + nynz + nzng




Example

(a)

Figure 3: CDF design on an airport terminal model. (a) The original model. (b) An initial CDF from user-specified strokes (red lines).
The optimized CDF. (d) The resulting PQ mesh.




Extension to 3D field
Paper: All-Hex Meshing using Singularity-Restricted Field

e F ={U,V,W)
e Right-handled: U XV -W >0

* 24 equivalent classes since the permutations form the chiral cubical
symmetry group G.

First vector has six options

e Second one has four options

Third one only has one options

6X4xX1=24

i Smoothness measure.
e closeness from Pfg to G
e Similar to former method



Efficiency

* Former methods:
e Large-scale sparse linear system or nonlinear energy
* Expensive: too many variables
* Global view

* |s there any other ways?
* Reducing the variable number
e Starting from local view



Paper: Instant Field-Aligned Meshes




Key technigues

. Gauss—SeideI method

JEQ(D) Wij

JEQ(D)

* Multiresolution hierarchy
* improve convergence

* allow the algorithm to move
out of local minima

Figure 24: Qur method scales to extremely large datasets, such
as the 372M triangle St. Matthew statue acquired by the Digital
Michelangelo project [Levoy et al. 2000]. The middle column shows
a visualization of the position field, and the right is the final quadri-
lateral mesh. The entire process takes 9 minutes and 18 seconds.
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Convex polygon

* One can walk between any two vertices along a straight line without
ever leaving the polygon.

(a) A convex polygon. (b) A non-convex polygon



Convex polygon

* Aset P € R%is convexif pq € P,Vp,q € P.

* An alternatively equivalent way to phrase convexity:
e For every line | € R%, the intersection [ N P is connected

(a) A convex polygon. (b) A non-convex polygon

* For any family {P;} of convex sets, the intersection N; P; is convex.



Convex hull

e The convex hull of a finite point set P € R? forms a convex polytope,
denoted as conv(P).

* Each p € P for which p € conv(P \ {p} ) is called a vertex of
conv(P).

* A vertex of conv(P) is also called an extremal point of P.

* A convex polytope in R? is called a convex polygon.



An example of conv(P)

g3
92 Extremal point
(a) Input. (b) Output.



Trivial algorithms of Convex hull

e Carathéodory’s Theorem

* Test for every point p € P whether thereare g,7,s € P \ {p} such
that p is inside the triangle with vertices g, r, and s.

* Runtime 0(n*).

* The Separation Theorem:

* Test for every pair (p,q) € P? whether all points from P \
{p, q} are to the left of the directed line through p and g (or on the
line segment pq).

* Runtime 0(n?).



Triangulation of polygon

e A triangulation nicely partitions a polygon into triangles, which allows,
for instance, to easily compute the area or a guarding of the polygon.

* Another typical application scenario is to use a triangulation T for
interpolation.

(a) Simple polygon triangulation.



Triangulation of a point set

* A triangulation should then partition the convex hull while respecting
the points in the interior.

(b) Point set triangulation. (c) Not a triangulation.



Definition

* A triangulation of a finite point
set P c R? is a collection T of
triangles, such that:

* (1) conv(P) =Uper T

*(2) P =Urer V(T)

* (3) For every distinct pair T, U € T,
the intersection T N U is either a

common vertex, or a common
edge, or empty.

(b) Point set triangulation.






Delaunay triangulation

* Definition: For a given set P of discrete points in a plane is a
triangulation DT (P) such that no point in P is inside the circumcircle
of any triangle in DT (P).

* Empty Circle property

N



Empty Circle




Four points in convex position

) aa

(a) Delaunay triangulation. (b) Non-Delaunay triangulation. ) Two Delaunay triangulations.



The Lawson Flip algorithm

* (1) Compute some triangulation of P

 (2) While there exists a subtriangulation of four points in convex
position that is not Delaunay, replace this subtriangulation by the
other triangulation of the four points.




Theorem

Let P € R? be a set of n points, equipped with some triangulation T .

The Lawson flip algorithm terminates after at most (Tzl) = 0(n?) flips,

and the resulting triangulation D is a Delaunay triangulation of P.

Two-step proof:
1. The program described above always terminates.

2. The algorithm does what it claims to do, namely the result is a
Delaunay triangulation.



The Lifting Map

* Given a point p = (x,y) € R?, its lifting [(p) is the point
[(p) = (x,y,x* +y*) € R’

Geometrically, [ “lifts” the point vertically up until it lies on the unit
paraboloid:

(a) The lifting map.



Important property of the lifting map

e Lemma: Let C € R? be a circle of positive radius. The “lifted circle”
[(C) = {l(p)|p € C}is contained in a unique plane h(C) € R>.

 Moreover, a point p € R? is strictly inside (outside, respectively) of C if
and only if the lifted point [(p) is strictly below (above, respectively) h(C).

(b) Points on/inside/outside a circle are lifted to
points on/below/above a plane.



(1) Termination

Their lifted images
form a tetrahedron.

=

(a) Before the flip: the top two triangles of (b) After the flip: the bottom two triangles of the
the tetrahedron and the corresponding non- tetrahedron and the corresponding Delaunay
Delaunay triangulation in the plane. triangulation in the plane.




(1) Termination




(1) Termination

* A Lawson flip can therefore be interpreted as an operation that replaces
the top two triangles of a tetrahedron by the bottom two ones.

* If we consider the lifted image of the current triangulation, we therefore
have a surface in R3 whose pointwise height can only decrease through

Lawson flips.

* In particular, once an edge has been flipped, this edge will be strictly
above the resulting surface and can therefore never be flipped a second

time. Since n points can span at most (g)edges, the bound on the
number of flips follows.



(2) Correctness

* Locally Delaunay: Let A, A’ be two adjacent triangles in the
triangulation D that results from the Lawson flip algorithm. Then the
circumcircle of A does not have any vertex of A’ in its interior, and vice
versa.

* Locally Delaunay < Globally Delaunay:
e contradiction



Locally Delaunay < Globally Delaunay

Figure 2.7: (a) Because 7’s open circumdisk contains v, some edge between v and 7 1s not
locally Delaunay. (b) Because v lies above ¢ and in 7’s open circumdisk, and because w,
lies outside 7’s open circumdisk, v must lie in 7¢’s open circumdisk.
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Maximize the minimum angle

* Indeed, we will show that Delaunay triangulations maximize the
smallest angle among all triangulations of a given point set.

* Note that this does not imply that there are no long and skinny
triangles in a Delaunay triangulation.

e But if there is a long and skinny triangle in a Delaunay triangulation,
then there is an at least as long and skinny triangle in every
triangulation of the point set.



Maximize the minimum angle

* A flip replaces six interior angles
by six other interior angles, and we
will actually show that the smallest
of the six angles strictly increases
under the flip.

* Before the flip:

° Tek
After the ﬂ IP: (a) Four cocircular points and the (b) The situation before a flip.
induced eight angles.

* al,az,a_g,a_4,ﬁ+a4,%+a3
‘>, >ﬁ,a_3>a3,a_4>a4

A1+ ag > Ay, Ay + a3 > a3
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ptimal Delaunay triangulation




Thinking from surface approximation

E = 2 f () — u(x)| dx

TeET T

u(x): z = x% + y?

ti(x): piecewise linear interpolation of u
J: a triangulation

Fix positions of vertices, Delaunay triangulation is optimal.



Update of vertices’ positions

* Fix the triangulation, update the vertices.

E = zjIu(x)—u(x)ldx—qu(x)dx+C

ﬁ TeET T
-S4 o) +u(py) + ue + 0
N 7T 0
VE, = ) = () +u(py) + u@i) + 5 Vup) = 0
TeQ(i)

Vmu@J—ol .
Vu(p;) = Tl Z ri —— (u(p;) + u(pr))

TeQ(i)

Because Direq(i



Optimal Delaunay triangulation

* Alternately iterate:
* Update triangulation
* Update vertices

* Extension to any convex function u(x):
* Delaunay triangulation — regular triangulation

AN
ﬁi‘“§§s
SR

(x%+y?)
u(x,y) =e 10
Q = [-5,5]?

ViV 8
D

NEZh
5
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Post Office Problem

* Suppose there are n post offices py, ..., p,, in a city.

* Someone who is located at a position g within the city would like to
know which post office is closest to him.




Post Office Problem

* Do not think from the queries.

* Our long term goal is to come up with a data structure on top of P
that allows to answer any possible query efficiently.

* Basic idea:
 Partition the query space into regions on which is the answer is the same.

* |n our case, this amounts to partition the plane into regions such that for all
points within a region the same point from P is closest.



Two post offices

* Proposition

e For any two distinct points in R%, the bisector is a hyperplane, that is, in R? it
is a line.

pi®

H(pi, p;j)

The bisector of two points.



Voronoi cell

e Givenaset P = {p4,...,p,,} of points in R?, for p; € P denote the
Voronoi cell VP (i) of p; by

VP(i) ={q € R*|llg — pill < llg —pll,vp € P}

2. VP(i) is non-empty and convex.

w

Observe that every point of the plane lies in some Voronoi cell but
no point lies in the interior of two Voronoi cells. Therefore these
cells form a subdivision of the plane.



Voronol Diagram

* The Voronoi Diagram VD (P) of aset P = {p4,..., p,,} of points in R?
is the subdivision of the plane induced by the Voronoi cells VP (i), for
I =1,..., n.

VV(P): the set of vertices
VE(P): the set of edges

VR(P): the set of regions

Example: The Voronoi diagram of a point set.



Lemma 1

* For every vertex v € V'V (P) the following statements hold.
* 1) vis the common intersection of at least three edges from VE (P);
* 2) visincident to at least three regions from VR (P);

Proof: As all Voronoi cells are convex, each interior
angle is less than m, thus k = 3 of them
must be incident to v.

Ezample: The Voronoi diagram of a point set.



Lemma 1

* For every vertex v € V'V (P) the following statements hold.
* 1) v is the common intersection of at least three edges from VE (P);
* 2) visincident to at least three regions from VR (P);
* 3) vis the center of a circle C(v) through at least three points from P;




Lemma 1

* For every vertex v € V'V (P) the following statements hold.
* 1) v is the common intersection of at least three edges from VE (P);
* 2) visincident to at least three regions from VR (P);
* 3) vis the center of a circle C(v) through at least three points from P;
c4)C(v)°’NP =@.C(v)°: The interior of C(v).

Suppose there exists a point p; & C(v)°.
Then the vertex v is closer to p; than it is to
any of p4,..., Py, in contradiction to the fact

that v is contained in all of VP(1),...,VP(k).




Lemma 2

* There is an unbounded Voronoi edge bounding
VP(i)and VP (j) © p;jp; N P = {p;,p;} and
p;pj € dconv(P), where the latter denotes the
boundary of the convex hull of P.

* Proof: There is an unbounded Voronoi edge bounding
VP(i) and VP(j) < thereisaray p C b; ; such that
I = pll > llr = pill(= ||Ir = ps]|). vr € p and py €
P\{p;, pj}. Equivalently, thereisaray p C b; ; such that

for every point r € p the circle ¢ € D centered at r does
not contain any point from P in its interior.
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Duality

* A straight-line dual of a plane graph G is a graph G' defined as follows:
choose a point for each face of ¢ and connect any two such points by a
straight edge, if the corresponding faces share an edge of G.




Delaunay triangulation

* Theorem: The straight-line dual of VD (P) for aset P ¢ R? of n >
3 points in general position (no three points from P are collinear and
no four points from P are cocircular) is a triangulation: the unique
Delaunay triangulation of P.

Proof: = Proof: <
1. convex hull 1. Circumcenter is
2. Triangles selected for each face.

3. Empty circle property 2. Empty circle property.
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Definition — CVT

A class of Voronoi tessellations where
each site coincides with the centroid

(i.e., center of mass) of its Voronoi
region.




Applications — Remeshing




Energy function

n
Ey, o, D, Viy o V) = z f Ix — ;|12 dx
i=1y;

1. For a fixed set of sites P = {p4,..., 0, }, the energy function is
minimized if {V, ..., I}, } is a Voronoi tessellation.

2. For the fixed regions, the p; are the mass centroids c; of their
corresponding regions V.



Lloyd iteration

* 1. Construct the Voronoi tessellation corresponding to the sites p;.

* 2. Compute the centroids c¢; of the Voronoi regions V; and move the
sites p; to their respective centroids c;.

* 3. Repeat steps 1 and 2 until satisfactory convergence is achieved.
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Remeshing

* Given a 3D mesh, compute another mesh, whose elements satisfy
some quality requirements, while approximating the input acceptably.
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Remeshing

* A key technique for mesh quality improvement

e Goal

* 1. Reduce the complexity of an input surface mesh
* subject to certain quality criteria

e 2. Improve the quality of a mesh
» Different applications imply different quality criteria and requirements.

* Given a 3D mesh, compute another mesh, whose elements
satisfy some quality requirements, while approximating the
input acceptably.



Discussion

* Input: a manifold triangle mesh or part of it.

* Mesh quality
* Sampling density
* Regularity
* Size
* Orientation
* Alignment
e Shape of the mesh elements.
* Non-topological issues (mesh repair)



Local Structure

* Element shape

* |sometric

* Anisotropic
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Local Structure

* Element density
* uniform VS. nonuniform or adaptive
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Local Structure

* Element alignment and orientation
* elements should align to sharp features
e orientation of anisotropic elements




Global structure

* Vertex

* Regular
* Valence = 6 for triangle mesh
e Valence = 4 for quad mesh

* Irregular (singular)

e Global

* |rregular

* Semiregular

* regular subdivision of a coarse
initial mesh

e Highly regular
* most vertices are regular

* Regular
* all vertices are regular Figure 6.2. Meshes: Irregular (left), semiregular (center), and regular (right).

(Model courtesy of Cyberware.)
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Incremental Remeshing

* Input: triangle mesh and a target edge length
* Method

* Split long edges
e Collapse short edges
* Relocate vertices

Edge Edge Edge Vertex

CoIIapse Spllt Fl|p Relocatlon

o9 & O D




Pseudo-code

Remesh(target edge length)

4

Low_e = * target edge length

High e = % * target edge length
fori=0to 10 do
split long edges( high e )
collapse short edges( low_e, high e )
equalize valences()
tangential relaxation()
project to surface()



Discussion

4 4 :
* Proper threshold m and S are essential.

* split long edges( high_e )
* visits all edges of the current mesh
* If an edge is longer than the given threshold high e, the edge is split at its
midpoint and the two adjacent triangles are bisected

&




Discussion

e collapse short edges( low e, high e )
* collapses and thus removes all edges that are shorter than a threshold low_e.

* [ssue
* by collapsing along chains of short edges, the algorithm may create new
edges that are arbitrarily long.
* This issue is resolved by testing before each collapse whether the collapse
would produce an edge that is longer than high.

* If so, the collapse is not executed.
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Discussion

e equalize valences()
* equalizes the vertex valences by flipping edges.

* The algorithm tentatively flips each edge and checks whether the deviation to
the target valences decreases.

* The tangential relaxation()

* an iterative smoothing filter to the mesh

* the vertex movement has to be constrained to the vertex tangent plane in
order to stabilize the following projection operator.



Discussion

* The tangential relaxatlon() uniform Laplacian weights

W 2P

p]E.Q(p)

projecting g onto p’s tangent plane:
p' =q+nn'(p—q)

* Project to surface()
* maps the vertices back to the surface.



Adaptive edge length

Figure 1: Left: How to determine the edge length | for ap-
proximating a circular arc up to an error tolerance €. Right:
For surfaces the edge length | has to be scaled to yield
the target edge length L for an equilateral triangle. In the
surface case, the left and right figures can be considered a
cross-section or a top view of each other.

e | = 2V2rs — &2

k;: maximum absolute
curvature at Xx;



Discussion

* Feature preservation.

. fea’ijurle edges and vertices have already been marked in the input
model.

* 1. Corner vertices with more than two or exactly one incident feature
edge have to be preserved and are excluded from all topological and
geometric operations.

. ZaFeature vertices may only be collapsed along their incident feature
edges.

e 3. Splitting a feature edge creates two new feature edges and a feature
vertex.

* 4, Feature edges are never flipped.

* 5. Tangential smoothing of feature vertices is restricted to univariate
smoothing along the corresponding feature lines.
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igure 6.13. Isotropic, feature-sensitive remeshing (right) of a CAD model (left)
eft).




Parameterization-based method

* All remeshing algorithms compute point locations on or near
the original surface.

* Global parameterization.
* The input model is globally parameterized onto a 2D domain.

e Sample points can then be easily distributed and relocated in the
2D domain.

e Be lifted to three dimensions

* Disadvantages:
e Parametric distortion
* Discontinuities when the mesh needs to be cut into a topological disk.



Global parameterization

Figure 15: Uniform remeshing of the fandisk model with 10k vertices. Top row: Initial sampling computed by direct error diffusion, and
sampling obtained after 20 iterations of Lloyd relaxation. Bottom row: closeup over the Voronoi tessellation after Lloyd convergence, global
view of the remeshed model, and several closeups nearby the features.




Closed surface

* Parameterization-based method requires cut paths.

* How to generate the cut paths:
e Distortion, D-Charts
* Visit at least twice
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Approximation

* Definition:
e Given a 3D mesh, compute another mesh, whose elements satisfy some
quality requirements, while approximating the input acceptably.

3.26 x 103




Hausdorff distance
https://en.wikipedia.org/wiki/Hausdorff distance

* Hausdorff distance measures how far two subsets of a metric space
are from each other.

* Let X and Y be two non-empty subsets of a metric space (M, d). We
define their Hausdorff distance dy (X, Y) by

dy(X,Y) = max {ilég Hele/ d(x,y), f}lé}; IIEl)f( d(x, y)}

where sup represents the supremum and inf the infimum.



Hausdorff distance

sup inf d(z
sup inf (z,y)

In general:
sup inf d(x,y) # sup inf d(x,
sup inf d(x,y) Sup 1} (x,7)

sup inf d(z
yE}IBLCEX ( y)



Hausdorft distance on triangular mesh

* Hausdorff distance between M; and M,:

dH(er Mz) — maX{dh(Ml: M), dn(M,, M1)}

where

d,(S,T) = max min d(p,q)

Note: d(p,T) = melp d(p, q) is the distance fromp to T.
q

The distance of a point p to a surface T is defined as the shortest
distance between p and any point of T.



Approximating dy (M4, M)

* Assume that M, is sampled by a point set S; € M; and M, is
sampled by a point set S, € M,

* d;,(My, M,) can be approximated by
d,(M{,M,) = maxd(a, M)

aESl

e = dy (M, M,) = max{max d(a,M,), maxd(b, M1)}

aESl bESZ

* It provides significantly higher accuracy than a point cloud distance
dy(S1,52)-



Sampling

Stratified sampling process




Error-bounded method

* A local operator is only executed if it respects the approximation error
bound.

* never leaving the feasible set of meshes with approximation error

* A local operator
* Edge collapse
Edge split
Edge flip
Smoothing / Relocation



Main limitations

* 1. Time consuming
* 2. Infinite loop J— //___——\ J—

minimal

angle
new
minimal
angle



Thinking from a different view
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Thinking from a different view

* A key observation: more uniformly distributed vertices are used for
remeshing, the Hausdorff distance between the remeshed and input
meshes is usually easily bounded.

* During the remeshing process, intermediate meshes are allowed to
violate the error-bounded constraint, and attempt to reduce the
Hausdorff distance by adding vertices into the mesh.



Algorithm

* 1. Initialize a target edge length field L(x)

ing L(x)

ing us
e Ifd,(M{,M,) < &, stop the algorithm

e 2. Perform edge-based remesh

sixteenth
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then go to step (2).
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Angles

Isotropic Surface Remeshing without Large and Small Angles

* All the triangles with small or large angles outside the desired bounds
[Bmin, Bmax] are processed.

* Large angle removal: edge splitting
* Small angle improvement: edge collapsing



Large angle removal
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Optimal Delaunay Triangulation (ODT)
E = 2 f () — u(x)| dx

u(x): z = x% + y?
ti(x): piecewise linear interpolation of u

J: a triangulation

Fix positions of vertices, Delaunay triangulation is optimal.



Update of vertices’ positions

* Fix the triangulation, update the vertices.

E = zjIu(x)—u(x)ldx—qu(x)dx+C

ﬁ TeET T
-S4 o) +u(py) + ue + 0
N 7T 0
VE, = ) = () +u(py) + u@i) + 5 Vup) = 0
TeQ(i)

Vmu@J—ol .
Vu(p;) = Tl Z ri —— (u(p;) + u(pr))

TeQ(i)

Because Direq(i



Optimal position

e Sinceu = x? + y?

S 7|T|
vt =—1ar 2. g nill” + el

TeQ(i)

12,

Ifu=x%+y? =||x||? > u = ||x — p;||?, it does not change the

interpolation error, leading to thle |same optimal position.
1 VIT

p; = p; Tl A T(pr PLH + llpr — pill%)
TeQ(i)



Weighted circumcenter

VIT]

* Since ETEQ(DT =0, if Hpj — piHZ are equal,

thenp; = p;.

* For the right case, the optimal position of p; is
the circumcenter ¢ of Ap,p,ps.

C

[
1 (VIAplpipsl

a6 U= pili2 +llps ~ pil?) —~

V|Ap:p2pil
t————(lp —pil® +lpz —pil> D2 P3




Weighted circumcenter

* A special case: p; = p;
C

1 ‘7|AP1PiP3|
— (lpy — p3ll®)
|Ap, D, 5] ( 6 P1—Ps

V|Ap1p2ps
+————(Ips = psl* + lIp2 = psl1*)

P2 pi(p3)



Weighted circumcenter

* Taking the one-ring of p;

Z Tjlc;

T;€Q(p3)
= > 5l
T;€Q(p3)
V|Ap1pipsl V|App,ps|
- PP (o — pall?) + 2222 (lpy — pall? + llpz = pall?)

T ;€Q(p3)



Centroidal Voronoi tessellations (CVT)

n
E=z fllx—pillzdx VT

i=1vy;

n
E:E fux—piuzdx CPT

1=1 Q(p;)



Centroidal Patch Triangulation (CPT)

* Delaunay triangulation
* Moving p; to the centroid c¢; of the corresponding patch.

n
F= [ Ix-pilax

=1 Q(p;)
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Simulated annealing method with the operation “perturb-optimize”
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Metric

* A metric on a set X is a function (called the distance function or
simply distance)
d:X XX - |0, )

where [0, o) is the set of non-negative real numbers.

* Forall x,y,z € X, the following conditions are satisfied:
v Non-negativity or separation axiom
vd(x,y)=0
v'Identity of indiscernibles
vVdx,y)=0=x=y
v Symmetry
vid(x,y) =d(y,x)
v'Subadditivity or triangle inequality
vd(x,z) <d(x,y)+d(y,z)



Metric

* Conditions 1 and 2 together define a positive-definite function.
* The first condition is implied by the others.

* In practice, the metric can be represented by a positive-definite
symmetric m X m matrix M (x).

* M(x) = Q(x)"Q(x).

* Given a M (x), its decomposition to Q(x) is non-unique.



Length

* Given the metric field M(x) and an open curve C C (), the length of
C is defined as the integration of the length of tangent vector along
the curve C with metric M (x)

* The anisotropic distance d,;(x, y) between two points x and y can be
defined as the length of the (possibly non-unique) shortest curve
(assuming line segment) that connects x and .

j JG =) THMx + (A= 0y)(x — y)dt




Anisotropic remeshing

* Input:
e Domain: Q € R4
e Metric field: M(x), x € Q

* d X d positive-definite matrix

* |sotropic remeshing
* All edge lengths are as equal as possible.

* Anisotropic remeshing
* All edge lengths with metric are as equal as possible.
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Anisotropic remeshing
e Eigen-decomposition: M(x) = U(x)AU (x)!

* Transformation @ = AY2U (x)T

* The quality metrics are measured in the transformed space.

transforms simplex to isotropic space




ODT properties [Chen 2004, Liu et al. 2013, Desbrun et al. 2013]

cu(x) =-x% =

Topr = Delaunay triangulation

* u(x) convex =
Topr = regular triangulation

power weight: w(x) = x% — 2 u(x)



ODT method

Iterative mesh optimization:

» update vertices: move each vertex to its power-weighted circumcenter

* update connectivity: compute constrained reqgular triangulation




Thinking from optimization




ODT limitations

* M must be Hessian of a global u

 u must be convex

= neither true for general M'!



Locally Convex Triangulation (LCT)
Anisotropic Simplicial Meshing Using Local Convex Functions

Anisotropy approximated locally by per-simplex convex function:
u(x) - u (x).

P

Pk

averaged metric squared edge length




LCT Optimization

minByer 2 ) Fe= " [ 100 = we (@)l dx

TET TET T

Step 1: compute H, on each simplex
Step 2: fix connectivity, update vertices
Step 3: fix vertices, update connectivity




Vertex update

Update each vertex p in sequence:
* one-ring 7; € Q(p)
* energysumE, = ), ET].
* gradientg = 0E,/0p
* Hessian h = PD(0°E,/0p?)
*p'=p-ahTyg

restrict boundary/feature vertices



Connectivity update

triangle mesh = edge flip

tetrahedral mesh = 2-3,

3-2, 4-4, 2-2 flips

R




ing pipeline

IC mesh

trop

1SO

An

tric
ial mesh

domain + me

t

+ ini

AN R e AT e i Ay




iInement

Edge ref

r—q)

M(p) + M(q)
2

-7

le™ ] zj

e splitif |e™1| > BL

e collapseifle™| < L/B

ST
2T S

LAV Ak

RN

0
)

i
A
-&m\

=
Wﬂ..\\\\“W\m‘

._.o‘

)

T g‘uﬁ)’rﬂvl’

ST S SN
S
SRR

a7,
=0

BT,

T

(i

174

=

VAV
ZETESANY

N

SN

o
wﬁ

ZESZEN

X
Sl

s
Sy
ST
S
Y
N

Ay,
\%
ISy

SN

N
VAN 7.?
/)

Nawy

B

AL

N

SO

Wy
e S

N Sk
[l —"]-

e

PSS

vl
zZ~]

)

)
7=

Zs

Ay,

PR,

N

=) Wq«v

v,

Ay
ARSI
Sk

S\Wavsvises?

—X

A\

ANNN
A




Geometric refinement
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Sliver elimination (tetrahedral mesh)

* perform 5-4 flips

e perturb vertices and perform flips to eliminate small dihedral angles
[Tournois et al. 2009]

flip eémiddie

sliver
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Partial-based method
Particle-Based Anisotropic Surface Meshing

* Considering each vertex as a particle, the potential energy between
the particles determines the inter-particle forces. When the forces
applied on each particle become equilibrium, the particles reach the
optimal balanced state with uniform distribution.

* Energy:



Data: a surface {2 with metric M, and the desired number of
vertices n

Result: an anisotropic sampling X of {2

Initialize particle locations X;

while stopping condition not satisfied do

Update the ANN data structure for the current sampling X;

for each particle © do

Get particle ¢’s neighbor N (i) from ANN;

for each particle j € N (i) do

Compute £ using Eq. (12);

Compute F* using Eq. (21); Qij (x,- — x]-)
end 20°
Sum the total force F* using Eq. (22);

Project F* to the surface tangent using Eq. (27);

end
Sum the total energy E in Eq. (13);

Run L-BFGS with E and {i:‘:”} to get updated locations X;
Project X onto the surface;

end
Algorithm 1: Anisotropic Particle Optimization with Metric M.




Particle-Based Anisotropic Surface Meshing

Zichun Zhong! Xiaohu Guo! Wenping Wang? Bruno Lévy?
Feng Sun? Yang Liu* Weihua Mao®

1 The University of Texas at Dallas
2 The University of Hong Kong
3 INRIA Nancy - Grand Est
4 NVIDIA Corporation
5 UT Southwestern Medical Center at Dallas
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Repalring

Xiao-Ming Fu
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Problem Statement

* Model repair is the process of removing artifacts from a geometric
model in order to generate an output model suitable for further
processing by downstream applications that require certain quality
guarantees for their input.

e Hole filling




Application dependent

* Depends on the particular application scenario:
* what kind of “models” are considered,
* what exactly constitutes an “artifact,”
* what is meant by “suitable for further processing”

Triangle soups
from CAD models

Registered range scans from scanners



One application

* The design cycle encountered in automotive CAD/CAM.

Models are typically manually designed in CAD systems that use trimmed NURBS
surfaces as the underlying data structure for representing freeform surface geometry.

However, numerical fluid simulations for shape analysis and optimization cannot handle
such NURBS patches directly but rather need a watertight, manifold triangle mesh as
input.

Thus, there is a need for an intermediate stage that converts the NURBS model into a
triangle mesh.

Unfortunately, this conversion process is prone to producing meshing artifacts that
cannot be handled by simulation packages.

Thus, the converted model has to be repaired—usually in a tedious manual post-process,
which often takes longer than the simulation itself.



Repairing Guidelines

 What is the upstream application? (trimmed NURBS surfaces)
* Determines characteristics and defects of input

* What is the downstream application? (manifold triangle meshes for FEM)
e Determines requirements on output

e Based on this information,
* is it necessary to repair the input?

* |f repairing is necessary,
* is there an algorithm that does it directly?

* |f direct repair is not possible,
e can several algorithms be used in sequence?

* If not,
* there is a gap in the state-of-the-art.
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Isolated Vertices and Dangling Edges
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Singular Edges

* When more than two
polygons share a common
edge, then such an edge is
said to be singular, complex,
or nonmanifold.

* Detection

e count the number of incident
triangles

Singular Edge




Singular Vertices

* When a vertex is not manifold
in the topology of the abstract
simplicial complex, it is called a
combinatorially singular vertex.

* Detection

e count the number of connected
components in the
neighborhood

Singular Vertex



Topological Noise
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Orientation

* Polygons in an indexed face set
are represented through
sequences of vertex indices.

* This is typically achieved by
selecting a seed face and by
propagating the orientation to
neighboring faces.

 Nevertheless, some
configurations are intrinsically
not orientable. Inconsistent Orientation




Surface Holes

* When digitizing a real-world
object through standard
laser range scanners, it is
usual to encouter occluded
parts which cannot be
captured because the laser
beam is shadowed by other
parts of the object.

* A hole is an undesirably
missing piece of surface Hole (with Islands)
within a triangulated patch.




Surfaces holes

* The boundary of a hole normally consists of one or more closed edge
loops.

* Holes might represent larger areas of missing data.
* Challenge of conceiving a plausible geometry to fill the holes

* May contain so-called islands.



Gaps

* When designing a surface
through standard CAD
systems, the various
tessellated patches are
typically slightly displaced in a
way that—though the
intention of the designer was
to construct a continuous
surface—adjacent patches

are separated by undesired Gap (with partial Overlap)
gaps.




Gaps

* A gap is defined as the empty region between two triangulated
surface patches that should be continuously connected but are not
due to the gap.

* The boundary of a gap, indeed, is typically made of two (or more)
disconnected chains of edges.

 Quite narrow.



Degenerate Elements

* Degenerate triangles are
triangles with zero area.

* These elements are the source of
several problems for numerous
applications, since many useful
entities cannot be computed on
such triangles (normal vectors,
circumscribing circles,
barycentric coordinates, etc).

(Near) Degeneracy



Self-Intersections

* Self-intersecting meshes are
typically generated

* by tessellation of multipatch
CAD models,

* by deformation of mesh
models,

* by composing models out of
multiple parts without care,

* or when merging patches
reconstructed from partial
scans of a 3D object.

* Due to the ambiguities, there
IS N0 common strategy to
tackle this problem.

(Self-)Intersection




Sharp Feature Chamfering

* The sharp edges and corners
of the original shape are
removed by the sampling
process and replaced by
irregularly triangulated
chamfers.

* Having such well-defined
sharp features has clear
advantages for both

visualization and reverse
engineering. Feature Chamfering/Aliasing




Data Noise

* Every digitization tool has a
finite precision.

* Thus, the acquired raw data
of the sampled model
contains additive noise from
various sources.

* A main challenge is to
remove the noise while
preserving the main
morphology of the
underlying sampled surface.
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Upstream applications

* Determines characteristics and defects of input
* The origin of defects in a mesh: Nature and Approach

 Nature of the data modeled
* (physical) real-world data
* (virtual) concepts

* Approach employed to convert such data into polygon meshes



Nature

* If a model is designed, the basic concept is typically an abstraction.

* Downstream applications may face problems such as
nonmanifoldness, gaps, and intersections.

* These defects are either caused by inaccuracies in modeling or
produced by description processes that are often based on surface
representations although solids are meant to be created.



Nature

* if the model is digitized, problems are mostly in the measured data.
* May include noise, holes, chamfered features, and topological noise

* Due to limitations of the measurement process employed for
digitization.



Approach

* Such abstraction/data is converted into a polygon mesh (if not
originally designed in polygonal form).

* The conversion itself can be the source of further flaws that depend
on the specific approach used.

* For example, a CAD model, gaps and intersections might arise due to the
necessarily occurring deviation of each triangulated patch from the original
curved surface.

* Depending on the quality of the tessellation algorithm also (near-)degenerate
polygons might be created.



Downstream applications

* Determines requirements on output

e Visualization

* only the existence of significant holes is generally deemed unacceptable; all
other types of defects can often be neglected.

* To achieve pleasing renderings of a certain visual quality, however, also noise,
gaps, and chamfered features can be adverse.



Downstream applications

* Modeling
* Connected surfaces without degeneracies are usually required.
* Intersections are often acceptable in the case of surface-based methods.

 Singularities and topological noise do not cause problems for some methods,
others require or prefer clean manifold meshes.

* Rapid prototyping
* The mesh model naturally needs to be convertible to a solid model, that is, it
has to well-define an interior and exterior volume
* So the mesh definitely has to be closed and free of intersections and singular
non-manifold configurations that would prevent an unambiguous volume
classification.



Downstream applications

* Geometry processing

* The input mesh is additionally required to be free of degeneracies and noise
in order to allow for the computation of element properties and discrete
differential quantities in a reasonable way.

 Aliasing effects like topological noise and chamfered features negatively affect
and disturb several of these methods.

e Simulation (FEM) of real-world phenomena on digital models

* The highest (all) requirements on the model’s quality in order to be able to
achieve reliable results.
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Registered range scans

* A set of patches (usually triangle meshes) that represent
overlapping parts of the surface S of a scanned object.

* The main geometric problem in this setup is the
potentially very large overlap of the scans.

e a point x on S is often described by multiple patches

* Each patch has its own connectivity that is usually not
compatible to the connectivity of the other patches.




Fused range scans

* Manifold meshes with boundaries (i.e., gaps, holes, and
islands).

e Either these artifacts are due to obstructions in the line of
sight of the scanner

* Or they result from bad surface properties of the scanned
model, such as transparency or glossiness.




Triangle soups

* Mere sets of triangles with little or no
connectivity information.

* They most often arise in CAD models

* manually created in a boundary
representation where users typically
assemble predefined elements (taken
from a library) without bothering about
consistency constraints.

* Due to the manual layout, these
models typically are made of only a few
thousands triangles, but they may
contain all kinds of artifacts.




Triangulated NURBS patches

* A set of connected triangle mesh patches that
contain gaps and small overlaps along the
boundaries of the patches.

* intersecting patches and inconsistent normal
orientations.

* These artifacts arise when triangulating two or
more trimmed NURBS patches that join at a
common boundary curve.

e Usually, each patch is triangulated separately;
thus the common boundary is sampled
differently from each side.



Contoured meshes

* Meshes have been extracted from a
volumetric dataset by Marching Cubes, Dual
Contouring, or other polygon mesh
extraction algorithms.

* signed distance field

* These meshes often contain other
topological artifacts, such as small spurious
handles.

* Due to the finite resolution of the underlying
grid, voxels are often classified incorrectly,
leading to the so-called partial volume effect.




Badly meshed manifolds

* Degenerate elements such as triangles with
zero area, caps (one inner angle close to m),
needles %one edge length close to zero), and
triangle flips (normal jump between
adjacent faces close to m).

' o

* From the tessellation of CAD models

e OQutput of Marching Cubes

* in particular if they are enhanced by feature-
preserving techniques

* The degenerate shapes of the elements
prevent further processing and lead to
Instabilities in numerical simulations.



Outlines

* Definitions

* Defects and flaws

e Upstream and Downstream applications
e Types of input

* Approaches



Surface-oriented algorithms

* operate directly on the input data and try to explicitly identify and
resolve artifacts on the surface.

* only minimally perturb the input model and are able to preserve the
polygonal mesh structure in areas that are not in the direct vicinity of
artifacts.

* Gaps could be removed by snapping boundary elements (vertices and
edges) onto each other or by stitching triangle strips in between the
gap.

* Holes can be closed by filling in a triangulated patch that is optimal
with respect to some surface quality functional.

* Intersections could be located and resolved by explicitly splitting
edges and triangles.



Surface-oriented algorithms (downside)

* To guarantee a valid output, surface-oriented repair algorithms
usually require that the input model already satisfy certain quality
requirements

* Often enough these requirements cannot be guaranteed nor even be checked
automatically, so these algorithms are rarely fully automatic but instead need
user interaction and manual post-processing.

* Due to numerical inaccuracies, certain types of artifacts (like
intersections or large overlaps) cannot be resolved robustly.

* Other artifacts, like gaps between two separate solids that are
geometrically close to each other, cannot even be identified.



Consistent Normal Orientation

* Consistently orienting the normals of an input model is part of most
surface-oriented repair algorithms

* Can even improve the performance of volumetric algorithms.

e Usually the orientation of the normals is propagated along a
minimum spanning tree between neighboring patches.



Surface-Based Hole Filling

* Describe an algorithm for computing a smooth triangulation of a hole.

* First, the holes are identified and filled by a coarse triangulation.

* These patches are then refined such that their vertex densities and
average edge lengths match those of the mesh surrounding the holes.

* Finally, the patch is smoothed so as to blend with the geometry of the
surrounding mesh.



Surface-Based Hole Filling

* This algorithm reliably fills holes in models with smooth patches.

* The density of the vertices matches that of the surrounding surface.
* does not check or avoid geometric self-intersections

* does not detect or incorporate islands into the filling patch




Conversion to Manifolds

* All complex edges and singular vertices are identified by counting the
number of adjacent faces.

* The input is then cut along these complex edges into separate
manifold patches.

* Finally, pairs of matching edges (i.e., edges that have geometrically
the same endpoints) are identified and merged, if possible, in a
topologically consistent manner.

* This, however, is done efficiently and robustly.



Gap Closing
 Typical for triangulated NURBS models.

* For each pair of boundary edges, the area between the two edges
normalized by the edge lengths is computed.

* This score measures the geometric error that would be introduced by
merging the two edges.

* Pairs of boundary edges are then iteratively merged in order of
Increasing score.



Gap Closing

e Usually easy to implement

* If the input data is well behaved and the user parameters are chosen
in accordance with the error that was accepted during triangulation,
they manage to produce satisfying results.

* However, there are no guarantees on the quality of the output.
* Allows the user to override the decisions towards the expected result.



Topology Simplification

* Detects and resolves all handles up to a given size € in a manifold
triangle mesh.

* Handles are removed by cutting the input along a non-separating
closed path and sealing the two resulting holes by triangle patches




Topology Simplification

* Detection
 Dijkstra’s algorithm on the dual graph from a seed triangle
* When two different loops touch along a common, a handle is detected

* To detect all handles of the input mesh, one has to perform the region
growing for every triangle.
* Downside

e cannot guarantee that no geometric self-intersections are created after a handle is
removed.



Volumetric algorithms

* Convert the input model into an intermediate volumetric representation
from which the output model is then extracted.

 fully automatic and produce guaranteed watertight models

* A volumetric representation can be any kind of partitioning of the
embedding space into cells such that each cell can be classified as being
inside, outside, or intersected by the surface.

* Volumetric representations: regular Cartesian grids, adaptive octrees, kd-
trees, BSP-trees, and Delaunay triangulations.

* Do not allow for artifacts like intersections, holes, gaps, overlaps, or
inconsistent normal orientations.

e Often also guarantee the absence of complex edges and singular vertices
* Spurious handles, however, might still be present.



Volumetric algorithms (downside)

* The conversion to and from a volume leads to a resampling of the model
* Introduces aliasing artifacts and loss of model features

* destroys any structure that might have been present in the connectivity of the input
model.

* The number of triangles in the output of a volumetric algorithm is usually
much higher than that of the input model
* thus has to be decimated in a post-processing step.

* The quality of the output triangles often degrades and has to be improved
afterwards.

* Volumetric representations are quite memory-intensive so it is hard to run
them at very high resolutions.



Volumetric Repair on Adaptive Grids

* The algorithm first creates an adaptive octree representation of the
input model where each cell stores the triangles intersecting with it.

 Cells that are not yet on maximum depth are recursively split if they either
contain a boundary edge or if the triangles within the cell deviate too much
from a common regression plane.

* From these triangles a feature-sensitive sample point can be computed for
each cell.

* Then, a sequence of morphological operations is applied to the octree
to determine the topology of the model.

* Finally, the connectivity and geometry of the reconstruction are
derived from the octree structure and samples, respectively.

* A Dual Contouring



Volumetric Repair on Adaptive Grids

Figure 8.7. From left to right: Adaptive octree (boundary cells are marked red).
Dilated boundary (green) and outside component (orange). Outside component
dilated back into the boundary cells. Final reconstruction. (Image taken from
[Botsch et al. 06b]. (©2006 ACM, Inc. Included here by permission.)
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Bijective Mappings
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Paper List

* Bijective Parameterization with Free Boundaries.

« Simplicial Complex Augmentation Framework for Bijective

Maps.

« Efficient Bijective Parameterizations
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Barrier function

distortion barrier

min+

2
&E
Er = 0,— —1
5 max ( dlSt(Ull Uz, Ul) )




Definition of distance

» Distance is not C-.

» Hessian of barrier function is difficult to compute.

» Convex-concave decomposition Is not easy.




Simplicial Complex Augmentation Framework
for Bijective Maps

Zhongshi Jiang, Scott Schaefer, Daniele Panozzo




Scaftold structure
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| | Hessian’s sparse structure changes

Solving sparse equations
- P « Symbolic phase (nonzero structure)

* Numerical phase (value)

* Solve phase (value)







Efficient Bijective Parameterizations

Jian-Ping Su, Chunyang Ye, Ligang Liu, Xiao-Ming Fu

log(Eg (M, M))

ON
Scaffold

Ours

Time(s)

ON [Smith and Schaefer 2015] Scaffold [Jiang et al. 2017]



Fixed nonzero structure

distortion barrier

min+
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Coarse shell
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Coarse shell

Time(s)
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Distance in [Smith et al. 2015]

» Distance is not C-.

» Hessian of barrier function is difficult to compute.

» Convex-concave decomposition Is not easy.

=

\




Distance based on triangle inequality

> Infinitely differentiable.
» Analytical second order approximation.

concave
dist(Uy, Uy, Up) = |U U || + UL U [ = || UL US|

2
E
Ep = 0, — —1
5 e ( dlSt(Ul; Uz, Ul) )

2
E
f — (E — 1> , g = diSt(Ul; U2; Ul)
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Geometric Optimization

(1) Mesh denoising
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(1) Mesh Deformation
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Geometric Optimization

) Mesh parameterization
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Geometric Optimization

-

(Iv) Mesh Interpolation l |‘ " > |



Geometric Optimization

(v) Mesh Simplification
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Jacoblan Matrix
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Jacobian Matrix

(%0, Yo0) (uo, vo)

¢i(x,y) = 4; [;C,] +9;
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Jacobian Matrix

(%0, Yo0) (o, vo)

¢i(x,y) = 4A; [;C,] +9;

Ju o0u]
ox dy
dv Jv

0x  dy.

Uy — U uz—u()] X1 — Xo xz—x()]‘l

X1, | —
(x1, y1) (uqy, vy) Ji [171—170 UV = Vof[Y1—Yo Y2—DYo



Jacoblan Matrix
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Singular Value
The arithmetic square root of non-negative eigenvalues of j7y

]lela C”a b]=[a2+c2 ab+cd]
b dllc dl lab+cd b?+ d?

S=vVa?+b2+Vc2+d? 0:| a'2+b'2—\/c'2+d'2|

WJIIZ = a?+ b? + c? +d? = tr(]T]) = Y2 4 g2



Distortion Measure

* Dirichlet
foren () = D Will2lel = (% + o)1t
+ ARAP | |
farar® = ) i = RO el = ) (G = D? +(oi = D)l
e Symmetric Dirichlet | |

fiso(x) = 2(”/1’“12? + 1J:172) 1t = Z(le + 272+ 0% + 07 %)ltl

%\’
fCONF(x)=Z<;;) 4

l

 Conformal



Laplace Matrix

Laplace Matrix i1s Hessian of fpren(x)

forenG = ) Will2lei = (32 + o)1t

(V1i—Y2 Y2—Yo Yo — V1
X2 —X1 Xo— X2 X1—Xp
Y1 — Y2

X2 —Xq

J=Tx forcu(®) = xTTTTx

Y2—=Yo Yo — V1

Xog — X2 X1 — XO_

L=TTT




Problem
min f(x) = ) 16/D(/i(0)

1.Initial point: x,, n=0
2.Descent direction: min f(x, +p)
3.Step size: mainf(xn + ap)

4.Update:x,,, =x, +ap, n=n+1



Method

min f(x, + p)
p

1
f&n +p) = f(xy) + Vf(Xn)Tp + EpTHp

Hp = =Vf(xn)

* First-order methods build descent steps by preconditioning the gradient with a
fixed proxy matrix, which often suffer from slower convergence as lacking of

higher-order information.

uses the energy Hessian, , to form a proxy matrix,
which can achieve the most rapid convergence but require the costly assembly;,
factorization and backsolve of new linear systems per iterate.



First-order method
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 Accelerated Quadratic Proxy for Geometric Optimization

» Scalable Locally Injective Mappings

 Blended Cured Quasi-Newton for Distortion Optimization



Accelerated Quadratic Proxy for Geometric

Yaron Lipman

Optimization

—— AQP
e [-BFGS

0 500

1000 1500 2000
1teration count



Motivation

Ill-conditioning dominated by a Laplacian-like term in energy.

locally approximating the energy with a function whose Hessian is Laplacian.

f&) =hx) +g&x
h(x) = %XTHX
fxno1+p) = h(xpq +0) + g1 +p)
f(xp—1 + D) = h(xp_q1 +p) + gn_1) + Vglxn—1)'p

Hxp_1+p)+Vg(lx,—1) =0

Hp = —Hxyp_4 — Vg(xn—l) = _Vf(xn—l)



Motivation

correctly balancing the information from its two last iterations.
V=1 +0)xp_q — Oxy_5
f&) =hx) +gx)

1
h(x) = EXTHX

fn+p)=h(ly,+p) +9Qyn+p)
fn+p) =h(y, +p) +glyn) +Vgly)'p
H(y, +p) +Vg(y,) =0

Hp = —Hy, — V.g(Yn) = _Vf(Yn)



Method

f&) =hx+g&x

1
h(x) = EXTHX

fyn+p) =hy,+p)+9(yn+p)

fOn+p)=h(y,+p)+90@) +Vgly)p
H(y, +p)+Vg(y,) =0

Hp = —Hy, —Vg(y,) = =Vf(yyn)

Algorithm 1: Accelerated Quadratic Proxy (AQP)

Data: feasible initialization x ; parameter 7

X1 =—=Xp =X,

_ 1—\/1/n |
14+4/1/n °

while not converged do

/+* Acceleration
y, = (1+0)Xp_1 —0xn_2;

/* Quadratic proxy minimization

p, =argmin, h(y, +p)+g(y,) + Va(y,)p
s.t. Ap=0

/* Line search
X, = linesearch g<+<1 f (y, +tp,,)
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Results

AQP
Global-Local

functional value

functional value
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L imitation

efficiency of Laplacian
approximation for an
arbitrary energy

f&) =hx+g9&x

1
h(x) = EXTHX

1
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Scalable Locally Injective Mappings
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Motivation
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Motivation

fiso®) = Z(Z"Z + 2724+ o + 072l

l

Isometric Z)(J )
Scaling = Shrinking ‘ Quality

Infinite on flips ‘ No flips ¢/




Motivation

farap(x) = 2((2& —1)% +(0; — 1)?)It;] fiso(x) = z(zf + 2724+ o + 072l

l l

Local/Global Symmetric Dirichlet
[Liu et al. 2008] [Smith and Schaefer 2015]
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ARAP  [3,(x)— R (J,(x))|
ARAP Proxy |[J;(x) — RH|[%

1) :
l ' 1) Matching gradient at given point
: 2) Minimum is closest minimum of ARAP

ARAP Proxy — pRI() = ||y - RY||? D) =] -RDIF  ARAP

* Majorizer: PRE(N=D() V]
 Matching gradient: 7, PRI (JM) = 7, D(M)

e Closest minimizer: m]inPR?(/) = Proj(J)



Generalize Local/Global

» Majorizer: PRE(N=D() V]
» Matching gradient: VPR = VDU
 Closest minimizer: m]inPR?(/) = Proj(J")

JP = Ji(xpoy) = USVT, RF=R(M) = UVT
RPY() = Iw( - RIIF R =R
7w - RIE = VD)

7ae(WTW(y —R)(J - R)T) = (WTW + WwT)(J — R) = V;D())
D) = ] - RDIIZ

1 1/2
7,D(J) =2(J — R) W = (5 VD) — R)‘l)
W =1



Generalize Local/Global

1 1/2
W = (E v, D(HJ - R)_1>

0
J=usvT s=|% ]

0 (o))

DY) =D(S) VDY) = UVsD(S)VT

J-R)=(UsvT —uvT) =W -DvT)  =v(S—-DUT

1 1/2
W = (E UVsD(SVTV(S — I)_lUT>

1 1/2
W=U (E 7sD(S)(S — 1)-1) uT = US,,UT



Generalize Local/Global

1 1/2
w=U (E 7sD(S)(S — 1)—1> uT = US,, UT

) ~ _ o 0
DY) =IE+WE?2 = (6 + 072+ 0f +057%) 5=[1 ]

0 (0)))
2(0y + 073) 0
v -
SD(S) 0 2(0'2 + 0, 3)
\/(01 +0;3) 0
01 — 1
SW -




Generalize Local/Global

Iterate
WLocal R* = R (Jf(xk)>

Compute weights

Global %"! = arg){ninZHW}“ (J(x) —RF)|[%
f

d Line search d = )~(k+1 — xk [Smith and Schaefer 2015]
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Blended Cured Quasi-Newton for Distortion
Optimization

YuFeng Zhu Robert Bridson Danny Kaufman
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Motivation

min f(x, + p)
p

1
f&n +p) = f(xy) + Vf(Xn)Tp + EPTHP

Hp = =Vf(xn)

* First-order methods build descent steps by preconditioning the gradient with a
fixed proxy matrix, which often suffer from slower convergence as lacking of
higher-order information.

« Newton-type methods uses the energy Hessian, 7/ (), to form a proxy matrix,
which can achieve the most rapid convergence but require the costly assembly,
factorization and backsolve of new linear systems per iterate.



Quasi-Newton Methods

1
) = f(Xp41) + Vf(Xn+1)T(X — Xp41) 2 (x — Xn+1)THn+1(X — Xn41)
l7]C(Xn+1) + Hn+1(Xn - Xn+1) = Vf(xn)

Hn+1(Xn+1 - Xn) = Vf(xn+1) - Vf(xn)

secant equation Hp1Sn = Yn Sn = Dpy1Yn

Pn+1 = —Dp1Vf(Xnt1)

T ST
Dyi1=QN(z,D,) =V (2)TD,V(z) 4 2non V() =1- —" Z: The difference in gradients
= QN(z D,)z

Dp+1 = QN(yn, Dy)



Quasi-Newton Methods

Quasi-Newton methods lie

In between two methods. They _emm
employ sequential gradients to . 4 o A
update approximations of the BOON  Blended ~ AQP  SL-BFGS

system Hessian, per descent
Iterate. However, the secant
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the sparse true Hessian, direct g : e BCQN
and incorrect coupling distant 5.0 =
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Blended Quasi-Newton

 The difference in gradients would be the better behaved Ls than y, which may
Introduce spurious coupling or have badly scaled entries near distorted triangles
Dn+1 = QN(LSn an)

« However, to achieve the superlinear convergence BFGS offers, near solutions we
wish to come closer to satisfying the secant equation, and so aim to move towards
using y instead.

zn = (1 — Bp)yn + Pnlsy

Brn = min |ly, — BLsyll? Pn = proj Inlsn
n_BE[O,l] Yn nll n — PIrOJ[o,1] ”LSnHZ

Dpyq = QN(Zn: Dn)



Result



Second-order method
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Motivation
min f(x) = ) 16/D(/i(0)

1.Initial point: x,, n=0
analytic and simple to evaluate

2.Descent direction: Hp = —Vf(x, ) :
P f ) convex approximate Hessian H

3.Step size: mainf(xn + ap)

4. Update:x,,, =x, +ap, n=n+1



Method

F60 =) hi(gi(9) = D (hi o g

hi:Rk—>R, hl=h:_+hz

g;: R* — R¥, g:=9; +9;

1
f(Xn + p) ~ f(Xn) + Vf(Xn)Tp + EpTHp

f is a local convex majorizer of f

H = V2f



Method

convex majorizer
concave minorizer

r=rt+r-
T(X;%) = r7(x) + r7(%9) + Vr~(x0) (X — %)

r(x;X9) =1~ (x) + 17 (%) + Vr*(x0) (x — %)
fF&) =h(g®) =h(9:X), -, g (X))

uy = g(xo)  s;(u) = sign <% (w; uo))

J

EJ(X} Xo) Sj(uy) >0
gj(X; Xo) sj(up) <0

[gj](xi Xo) = {

f (%) = h([g](x%0); o)



Method

f(x%0) = h([g](x; Xo); Ug)

f 1S convex majorier

727 (x xo) = dlgl" dlgl dh {Vzgjf sj(uy) >0
X » 207 —

Veht —+ ) —
0x 0x - 0, Vzgj‘ si(ug) <0

J

(%) = h([g](x%0); ug) = h(g(x); uy) = h(g(x)

H = V2f(x;%,)

X=Xo



¢ vs, Iterations




Result
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Real view

(%0, Yo0) (uo, vo)

¢i(x,y) = 4; [;C,] +9;

Ju  du]
_|ox ady|
Ji=|ap gv| = 4
dx 0y

(x1:3’1) ]i =

[ul —Uy Uy — uO] X1 —Xg Xy — x0]‘1
Vi—=Vo V2—=Vol|V1—Yo Y2—DXo

(ug,v1)



Complex view

z=x+1iy, z=x—1y

Z+ 2z zZ—7Z

Wo

$i(z,z) = az+ fz + 6;

[Ccl 3 [;] (ax + by) + i(cx + dy)

a+d+,c—b N a—d+,c+b _
2 T )Pt Tz Tha)?
_a+d+,c—b _a—d+_c+b
21 L B

Wq

2 =lal+18l, o=]|lal-18l|



Complex view

Wo

I Ji-F:

¢;(z,z) = az+ Bz + §;

[ ] —2Zy 71— 2| rwy = Wo]
B — Zy Zz — ZO _W2 — Wo
B 4lt;| |20 — 22 2z1— 2Zo N

Z1 W1 [(1] _ l Z_1_Z Z—ZO ZO _Z1
p 4lt;l 122 —2z1 20— 22 z1— 2



Complex view

. - - _ - _ _ WO
[“ __ ATz z2—20 Zo— Z|y,
Bl alt:\lzo — 2z, z0o—2, 2z —2z
Z4 W ltil |22 — 21 20 —2Z2 21— 2 W,
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4|t
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Complex view

Wy

$;(z,z) =az+ Pz + 6; a=DW, B =DW

Re(W)

_ [Re(a)
| minl.,

Im(a) ot » W= [

D= Re(D) —Im(D)
~ |Im(D) Re(D) e

Wq



Method

E=(32+0?+372+07%)

1
— (v2 4 52
> =lal+1Bl, o=la|—|pl = (Zi +“l)<1+2§a-2>

l

r:|a|2, S=|,B|2 =(T‘+S)(1+(T_S)—2)

_ m = VrZE’ Ny = VszE’ N3 = L VE
Hewe = VPE = MTKM

28,1 + 4njaa’ 4nzaB’

— D —
Maxe = [5] K= l 47}3,305T $ol + 47}2,[3,[3T



Method

Hexe = V2E = MTKM
Myxe = Rax4Q axe
r1s lower triangular matrix, ¢ is orthonormal
H = QT(RTKR)Q
The 6 x 6 PSD projection of #is therefore equivalent to the 4 x 4PSD

projection of RTKR, since ¢ is orthonormal.



Result

10" T— AKVF —e—FP-Newton
—— M — KP-Newton{ours)
- — KP-Newton{ours J-scaled




Result

KP-Newton

Iterations: 10

lolo -
il —#—— FP-Newton
Y KP-Newton(ours)
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Iteration



Progressive Parameterizations

Ruiqgi Ni Xiao-Ming Fu

log(E(M, MP))
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Motivation
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Parameterized mesh MP

Exsiting methods choose the
triangles f; of input mesh M
as reference triangles. The
energy Is numerically
difficult to optimize, leading
to numerous iterations and
high computational cost.



Motivation

If D(fl-’",fip) < K, Vi, only a few
iterations in the optimization of
E(M", MP) are necessary.

O
1

E(M",MP)

-2

Two iterations

(=]

al
L

H#Hiter

Goal: find a triangle between f;
and f;” as the reference f; that

satisfies D(f/, /") < K.



New reference triangles

 Exponential function :
Ji(t) = U;diag(of, 1)V}

where Ji = Uidiag(ai,ri)ViT
* Bounded distortlion:
DA A7) = 3 (o + o7 + it 4 17%0) <K

It is strictly increasing w.r.t t.

. Maximilze the guidance of reference triangle:
Z (a2 + 072+ ot 4 17%) = K

Newton-Raphson method




Construction of new reference



Our algorithm — Progressive parameterization

Input: a 3D
triangular mesh
+ initialization

Final
Optimization

Construct new
references

Update
Parameterization

Output 2D
parameterization




Hybrid solver

« SLIM [Rabinovich et al. 2017]

A reweighting scheme
* Pros: effectively penalize the maximum distortion

« Cons: a POOr convergence rate

* CM [Shtengel et al. 2017]

 Pros: converge quickly
 Cons: cannot reduce large distortion quickly

* Hybrid
* First perform SLIM solver
* Then use the CM solver



Result
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