
Introduction

陈仁杰

renjiec@ustc.edu.cn

http://staff.ustc.edu.cn/~renjiec

Computer Aided Geometric Design
Fall Semester 2024

mailto:renjiec@ustc.edu.cn
http://staff.ustc.edu.cn/~renjiec

Course Lecturer：陈仁杰

• Education/Job Experience
• 2001.9-2005.6，Zhejiang U.，Applied Math，B.Sc

• 2005.9-2010.6，Zhejiang U.，Applied Math，Ph.D

• 2011.3-2013.9，Technion, Israel，Postdoc

• 2013.9-2015.6，UNC-Chapel Hill，Postdoc

• 2015.7-2019.6，Max-Planck Institute for Informatics，Senior Researcher

• 2019.7-now， USTC，Professor

• webpage：http://staff.ustc.edu.cn/~renjiec

• email：renjiec@ustc.edu.cn

http://staff.ustc.edu.cn/~renjiec
mailto:renjiec@ustc.edu.cn

Teaching Assist

• 吴中昊

wzh2001@mail.ustc.edu.cn

• 吴川

809329975@qq.com

mailto:wzh2001@mail.ustc.edu.cn
mailto:809329975@qq.com

Introduction: Geometric Modeling

• Motivation

• Overview: Topics

• Basic modeling techniques

Motivation

Motivation

This lecture covers two related areas:
• Classical geometric modeling (CAGD)

• Geometry processing

Common techniques (math, models, terminology), but different
problems

Geometric Modeling

• Start with a blank screen, design a geometric model

• Challenge: mathematical description of shape information
• Computer friendly

• User friendly

• Typical techniques:
• Spline curves & surfaces

• Constructive solid geometry (CSG)

• Subdivision surfaces

Geometric Modeling

Geometric Processing

• A (discrete) sampling of the model is readily available
• Typically: 3D scanner (point cloud)

• Challenge: make sense of large complex, unstructured data
• Analyze and edit the geometry

• Typical issues
• Noise removal, filtering
• Surface reconstruction
• Analysis (features, symmetry, hole-filling, etc…)
• Parameterization (mapping textures)
• Editing, deforming

Examples
Geometric Modeling

The Modern World…

designed on a computer
(the building)

Impact of Geometric Modeling

We live in a world designed using CAD
• Almost any man-made structure designed with computers

• Architecture

• Commodities

• Bike, car

• Spline curves invented in automotive industry

• Fonts

• Our abilities in geometric modeling shape the world we live in each day

Different Modeling Tasks

Different requirement for different setups

Different Modeling Needs

CAD / CAM
• Precision Guarantees

• Handle geometric constraints exactly (e.g. exact circles)

• Modeling guided by rules and constraints

Different Modeling Tasks

Photorealistic Rendering
• Has to “look” good

• Ad-hoc techniques are ok

• Using textures & shaders to “fake” details

• More complexity, but less rigorous

[Deussen et al: Realistic modeling and
rendering of plant ecosystems, SIGGRAPH 1998]

Geometric Modeling
A look back

Modeling the old way

Basic tools
• Measuring and drafting tools

Industrial modeling developments

Industrial modeling: Two distinct shape classes
• Complex combination of elementary surfaces

• Easy to model (blueprint)

• Easy to produce

• Easy technical evaluations (volume, moment of inertia)

Industrial modeling developments

Industrial modeling: Two distinct shape classes
• Complex combination of elementary surfaces

• Easy to model (blueprint)

• Easy to produce

• Easy technical evaluations (volume, moment of inertia)

• Free-form shapes
• Required mainly by modern industries e.g. aeronautics,

shipbuilding, auto industry

• Not easy to describe mathematically

• Harder technical evaluations

Early modeling of free-form curves and surfaces

Splines
• Thin flexible band made out of wood, plastic or steel

• Can be held in shape using weights

• Smooth energy minimizing curves

Birth of Computer Aided Design (CAD)

Two major events
• The world’s first NC 3D milling machine (MIT 1951)

• Shapes can be described mathematically

• Read shape information from drawing

Birth of Computer Aided Design (CAD)

Two major events

• I. Sutherland sketchpad: A man-machine graphical communication system
(MIT 1963)
• Shape became visible (Not just a formula)

• Direct interaction with shape

Birth of Computer Aided Design (CAD)

Development of mathematical descriptions of Free form curves and surfaces

• Ferguson curves and surfaces (Boeing 1961)
• Vector description and use of parameters

• Coon surface patches (MIT 1964)
• Control through positions and tangents

• de Casteljau Algorithm (Citroën 1959)

• Bézier curves (Renault 1971, UNISURF system)

• B-splines, NURBS, T-splines, AST, S-splines…

Geometry Processing
Examples

Geometry Processing

A rather new area
• Motivation: 3D scanning

• 3D scanners

• Clouds of millions of measurement points

• Sources of spatial data:
• Science: CT, MRI,...

• 3D movie making

• Game / movie industry:

Servers with GBs of “polygon soup”

• Crawl the internet

• Need to process the geometry further

Computed Tomography：计算机断层扫描
Magnetic Resonance Imaging：磁共振成像

Photoshopping Geometry

Geometry Processing:
• Cleanup:

• Remove inconsistencies

• Make watertight (well defined inside/outside, for 3D printers)

• Simplify – keep only the main “structure”

• Remove noise, small holes, etc...

• Touch-up / Edit:
• Texturing, painting, carving

• Deformation

• Stitch together pieces

• Lots of other stuff – similar to image processing

Scan Registration

Feature Tracking

Fully Automatic:

Example

Example: The Stanford “Digital Michelangelo Project”

scanning

scanning

rendered
reproduction

[Levoy et al.: The Digital Michelangelo Project, Siggraph 2000]

Denoising

Size ~300mm Max. deviation : 0.1mm

Denoising

Remove noise, but preserve features

Original Noise added Denoised

Feature Detection

Find curves on a surface that carry visually most prominent characteristics

Feature Detection

Surface Parameterization: Motivation

Texture mapping

Graphics ingredients Real world

Texture mapping example

Surface Parameterization

Surface Parameterization

Latest Development
Geometric Design

Trend 1: Material design

Material distribution optimization
[Skouras et al. 2013]

Trend 2：Structure Design

Design

Small scale:
Micro-structure,
Frame, Foam, etc.

Large scale:
Assembly,

Mechanical, etc.

Microstructure Design

Microstructure in nature

Ack Lin Lv

Material Structure

Problem

Meso-structure

[Lv et al. 2014]

[Wang et al. 2013]

Elastic microstructure design
[Schumacher et al. 2015]

[Panetta et al. 2015]

Elastic microstructure design

53

[Martínez et al. 2016]

Functional microstructure design
[Ion et al. 2017]

Course Content

Homepage
http://staff.ustc.edu.cn/~renjiec/CAGD_2024S1/default.htm

Course Objectives

• Basic methods for geometry representations

• Geometric modeling and processing

• New developments in computer graphics and geometric design

• It is better to teach people how to fish tan to give them fish

Prerequisites: Mathematics

• Linear Algebra

• Calculus

• Geometry：space geometry、differential geometry

• Differential equations

• Optimization

• Numerical methods and computations

• …

Prerequisites: Programming

• Programming can realize and see the ideas in your mind

• Algorithm: rigorous logical thinking

• Matlab

• Python

• C++

• Various professional application software
• Photoshop, 3D Max, Maya, AutoCAD, Adobe Products…

Literature

Textbook: Splines

Gerald Farin

Curves and Surfaces for Computer
Aided Geometric Design

(Fifth Edition)

Textbook: Mesh Processing

Mario Botsch, Leif Kobbelt, Mark Pauly,
Pierre Alliez, Bruno Levy

Polygon Mesh Processing

Differential Geometry

Alfred Gray

Modern Differential Geometry of Curves and
Surfaces with Mathematica®

(Second Edition)

More on Rational Splines

Gerald Farin

NURBS – from Projective Geometry to Practical Use

(Second Edition)

• More details on rational curves & surfaces and
projective geometry

More on Differential Geometry

Wolfgang Kühnel

Differential Geometry:

Curves - Surfaces – Manifolds

More on CAGD

• Josef Hoschek and Dieter Lasser. Fundamentals of Computer Aided
Geometric Design. A K Peters/CRC Press. 1996.

• Thomas W. Sederberg. Computer Aided Geometric Design. Lecture notes.
2012.

• 朱心雄. 自由曲线曲面造型技术. 科学出版社. 2000.

• 王国瑾, 汪国昭, 郑建民. 计算机辅助几何设计. 高等教育出版社. 2001.

• 施法中. 计算机辅助几何设计与非均匀有理B样条. 高等教育出版社. 2001.

Some materials are available for download on the course homepage

Homework

• Assigned on Monday evening

• Due on Sunday

• Explained on the following Monday

Course Message

截止2020年9月，共有10个批次296家中国企业受到美国制裁。

^

工业软件的核心地位

According to statistics, the global market size of industrial software products has been growing at a rate of
about 5% per year, exceeding US$400 billion in 2019, and will reach US$433.2 billion by 2020. At present, the
domestic industrial software market is relatively small, accounting for only about 6% of the world's total, far
lower than China's 16% share of GDP. Therefore, in the context of future intelligent manufacturing, domestic
substitution, and software cloud computing, there is huge potential for development.

Development of CAx software in China

• Mid-1960s, the application of CAD/CAM technology in aviation and shipbuilding engineering
began to be studied.

• After mid-1970s, CAx technology developed rapidly.

• 1975, Xi'an Jiaotong University, 751 light pen graphic display.

• 1984, Professor Tang Rongxi of Beihang University developed China's first polyhedron solid
modeling prototype system PANDA.

• Mid-1980s, statistics showed that various colleges and research institutions had developed
more than 2000 CAD systems.

• Our country's first shipbuilding integrated production system;
• Nanhang B-SURF (3D-CAD) system can build full-machine digital models of two types of drones, and

present various perspective views and cross-section views of the whole machine and its components on
the IBM4341 graphic terminal.

• 1992, the Panda system of very large-scale integrated circuit computer-aided design (IC-CAD)
passed the national appraisal.

• At present, this type of EDA software is the weak point in the chip field.
• 2022, Cadence stopped supplying EDA to ZTE.

Development of CAx software in China

• Foreign industrial software giants have technological and market
advantages
• Foreign industrial software giants have almost all the core technologies and

standards in the industry, including Dassault, Siemens, Autodesk, etc. in the field
of R&D design software, and Siemens, etc. in the field of production control
software

• The catch-up road for local R&D design software companies is still
quite long
• The combined market share of the top three domestic companies in the R&D

design software market is only 9%Zhongwang, as the domestic company with
the highest market share in China's CAD market, has an operating income of
only 360 million and a profit scale of less than 100 million, which is 60-100 times
lower than Dassault and Autodesk

ZWSoft opened at 420 yuan on March 12, 2021, with a
market value of 25.335 billion yuan!

Challenges of CAGD&CG

• CAGD&CG has formed a complete industry chain in the United
States: scientific research, games, movies, entertainment,
education, art, industry...
• In China, it is gradually forming

• China is in urgent need of 3D talents!!!

Avast world with a lot to offer!

Interesting, fun and promising!！

Thank you!

Questions?

Mathematical background: Linear algebra

陈仁杰

renjiec@ustc.edu.cn

http://staff.ustc.edu.cn/~renjiec

Computer Aided Geometric Design
Fall Semester 2024

mailto:renjiec@ustc.edu.cn
http://staff.ustc.edu.cn/~renjiec

Vector Spaces

Vectors

Vectors are arrows in space

Classically: 2 or 3 dim. Euclidean space

“Adding” Vectors:

concatenation

Vector Operations

Vector Operations

Scalar Multiplication:

Scaling vectors (incl. mirroring)

You can combine it…

Linear Combinations:

This is basically all you can do.

𝒓 =෍

𝑖=1

𝑛

𝜆𝑖𝒗𝑖

Vector Spaces

• Definition: A vector space over a field 𝐹 (e.g. ℝ) is a set 𝑉 together
with two operations
• Addition of vectors 𝒖 = 𝒗 +𝒘

• Multiplication with scalars 𝒘 = 𝜆𝒗

such that

1. ∀𝒖, 𝒗,𝒘 ∈ 𝑉: 𝒖 + 𝒗 + 𝒘 = 𝒖 + 𝒗 +𝒘

2. ∀𝒖, 𝒗 ∈ 𝑉: 𝒖 + 𝒗 = 𝒗 + 𝒖

3. ∃𝟎𝑉 ∈ 𝑉: ∀𝑣 ∈ 𝑉: 𝒗 + 𝟎𝑽 = 𝒗

4. ∀𝒗 ∈ 𝑉: ∃𝒘 ∈ 𝑉: 𝒗 + 𝒘 = 𝟎𝑉

5. ∀𝒗 ∈ 𝑉, 𝜆, 𝜇 ∈ 𝐹: 𝜆 𝜇𝒗 = 𝜆𝜇 𝒗

6. for 1𝐹 ∈ 𝐹: ∀𝑣 ∈ 𝑉: 1𝐹𝒗 = 𝒗

7. ∀𝜆 ∈ 𝐹: ∀𝒗,𝒘 ∈ 𝑉: 𝜆 𝒗 + 𝒘 = 𝜆𝒗 + 𝜆𝒘

8. ∀𝜆, 𝜇 ∈ 𝐹, 𝒗 ∈ 𝑉: 𝜆 + 𝜇 𝒗 = 𝜆𝒗 + 𝜇𝒗

𝑽,+ is an Abelian group
The multiplication is

compatible with the addition

Vector spaces

• Subspaces
• A non-empty subset 𝑊 ⊂ 𝑉 is a subspace if 𝑊 is a vector space (w.r.t the

induced addition and scalar multiplication).

• Only need to check if the addition and scalar multiplication are closed.
𝒗,𝒘 ∈ 𝑊 ⇒ 𝒗 +𝒘 ∈ 𝑊
𝒗 ∈ 𝑊, 𝜆 ∈ 𝐹 ⇒ 𝜆𝒗 = 𝑊

• What are the subspaces of ℝ3?

Examples Spaces

• Function spaces:
• Space of all functions 𝑓:ℝ → ℝ

• Addition: 𝑓 + 𝑔 𝑥 = 𝑓 𝑥 + 𝑔 𝑥

• Scalar multiplication: 𝜆𝑓 𝑥 = 𝜆𝑓 𝑥

• Check the definition

Examples Spaces

• Function spaces:
• Domains and codomain need to be ℝ

• For example: space of all functions 𝑓: 0,1 5 → ℝ8

• Codomain must be a vector space (Why?)

Examples of Subspaces

• Continuous / differentiable functions
• The continuous / differentiable functions form a subspace of the space of all

functions 𝑓: 𝐷 ⊂ 𝑅𝑚 → 𝑅𝑛

• Why?

• Polynomials
• The polynomials form a subspace of the space of functions 𝑓:ℝ → ℝ

• The polynomials of degree ≤ 𝑛 again form a subspace

• Adding polynomials

෍
𝑖=1

𝑛

𝑎𝑖𝑥
𝑖 +෍

𝑖=1

𝑛

𝑏𝑖𝑥
𝑖 =෍

𝑖=1

𝑛

𝑎𝑖 + 𝑏𝑖 𝑥
𝑖

Constructing Spaces

Linear Span
• The linear span of a subset 𝑆 ⊂ 𝑉 is the “smallest subspace” of 𝑉 that

contains 𝑆
• What does that mean?

• For any subspace 𝑊 such that 𝑆 ⊂ 𝑊 ⊂ 𝑉, we have 𝑠𝑝𝑎𝑛 𝑆 ⊂ 𝑊

• Construction: Any 𝑣 ∈ 𝑠𝑝𝑎𝑛 𝑆 is a finite linear combination of elements
of 𝑆

𝑣 =෍
𝑖=1

𝑛

𝜆𝑖𝑠
𝑖

Spanning set
• A subset 𝑆 ⊂ 𝑉 is a spanning set of 𝑉 if 𝑠𝑝𝑎𝑛 𝑆 = 𝑉

Vector spaces

• Linear independence
• A subset 𝑆 ⊂ 𝑉 is linearly independent if no vector of 𝑆 is a finite linear

combination of the other vectors of 𝑆

• Basis
• A basis of a vector space is a linearly independent spanning set.

Dimension

• Lemma
• If 𝑉 has a finite basis of 𝑛 elements, then all bases of 𝑉 have 𝑛 elements

• Dimension
• If 𝑉 has a finite basis, then the dimension of 𝑉 is the number of elements

of the basis

• If 𝑉 has no finite basis, then the dimension of 𝑉 is infinite

Examples

• Polynomials of degree ≤ 𝒏
• A basis? What is the dimension?

Solution:

• An example of a basis is 1, 𝑥, 𝑥2, … , 𝑥𝑛

• Dimension is 𝑛 + 1

• Space of all polynomials
• A basis? What is the dimension?

Solution:

• An example of a basis is 1, 𝑥, 𝑥2, …
• Dimension is infinite

Finite dimensional vector spaces

• Vector spaces
• Any finite-dim., real vector space is isomorphic to ℝ𝑛

• Array of numbers

• Behave like arrows in a flat (Euclidean) geometry

• Proof:
• Construct basis

• Represent as span of basis vectors

Isomorphism is not unique, since we can choose different bases

Another Example of a Vector Space

Representation of a triangle mesh in ℝ𝟑

• Vertices : a finite set 𝑣1, … , 𝑣𝑛 of points in ℝ3

• Faces: a list of triplets, e.g. 2, 34, 7 ,… , 14, 7, 5

Another Example of a Vector Space

• Shape space
• Vary the vertices, but keep the face list fixed

• Is isomorphic to ℝ3𝑛

Linear Maps

Linear Maps

Definition
• A map 𝐿: 𝑉 → 𝑊 between vector spaces 𝑉,𝑊 is linear if

• ∀𝑣1, 𝑣2 ∈ 𝑉: 𝐿 𝑣1 + 𝑣2 = 𝐿 𝑣1 + 𝐿 𝑣2
• ∀𝑣 ∈ 𝑉, 𝜆 ∈ 𝐹: 𝐿 𝜆𝑣 = 𝜆𝐿 𝑣

This means that 𝐿 is compatible with the linear structure of
𝑉 and 𝑊

Linear Maps

Definition
• A map 𝐿: 𝑉 → 𝑊 between vector spaces 𝑉,𝑊 is linear if

• ∀𝑣1, 𝑣2 ∈ 𝑉: 𝐿 𝑣1 + 𝑣2 = 𝐿 𝑣1 + 𝐿 𝑣2
• ∀𝑣 ∈ 𝑉, 𝜆 ∈ 𝐹: 𝐿 𝜆𝑣 = 𝜆𝐿 𝑣

Some properties
• 𝐿 0𝑉 = 0𝑊
• Proof: 𝐿 0𝑉 = 𝐿 0 0𝑣 = 0𝐿 0𝑉 = 0𝑊

Linear Maps

Definition
• A map 𝐿: 𝑉 → 𝑊 between vector spaces 𝑉,𝑊 is linear if

• ∀𝑣1, 𝑣2 ∈ 𝑉: 𝐿 𝑣1 + 𝑣2 = 𝐿 𝑣1 + 𝐿 𝑣2
• ∀𝑣 ∈ 𝑉, 𝜆 ∈ 𝐹: 𝐿 𝜆𝑣 = 𝜆𝐿 𝑣

Some properties
• The image 𝐿 𝑉 is a subspace of 𝑊
• Proof: Show addition and scalar multiplication is closed

𝐿 𝑣1 + 𝐿 𝑣2 = 𝐿 𝑣1 + 𝑣2 ∈ 𝑊
𝜆𝐿 𝑣 = 𝐿 𝜆𝑣 ∈ 𝑊

Linear Maps

Definition
• A map 𝐿: 𝑉 → 𝑊 between vector spaces 𝑉,𝑊 is linear if

• ∀𝑣1, 𝑣2 ∈ 𝑉: 𝐿 𝑣1 + 𝑣2 = 𝐿 𝑣1 + 𝐿 𝑣2
• ∀𝑣 ∈ 𝑉, 𝜆 ∈ 𝐹: 𝐿 𝜆𝑣 = 𝜆𝐿 𝑣

Some properties
• The set of linear maps from 𝑉 to 𝑊 forms a subspace of the

space of all functions
• Proof: If 𝐿, ෨𝐿 are linear, then 𝐿 + ෨𝐿 is linear

If 𝐿 is linear, then 𝜆𝐿 is linear

Linear Map Representation

Construction
• A linear map 𝐿: 𝑉 → 𝑊 is uniquely determined if we specify the image of

each basis vector of a basis of 𝑉

• Proof: We have 𝑣 = σ𝑗 𝛼j𝑣𝑗 , hence

𝐿 𝑣 = 𝐿 ෍

𝑗

𝛼𝑗𝑣𝑗 =෍

𝑗

𝛼𝑗𝐿 𝑣𝑗

Matrix Representation

• Let 𝑉 and 𝑊 be vector spaces with respective bases 𝑣 = 𝑣1, 𝑣2, … , 𝑣𝑛 and 𝑤 =
𝑤1, 𝑤2, … , 𝑤𝑚

• Suppose 𝐿: 𝑉 → 𝑊 is a linear mapping, such that

𝐿 𝑣1 = 𝑎11𝑤1 + 𝑎21𝑤2 +⋯+ 𝑎𝑚1𝑤𝑚

…………………………………………………

𝐿 𝑣𝑛 = 𝑎1𝑛𝑤1 + 𝑎2𝑛𝑤2 +⋯+ 𝑎𝑚𝑛𝑤𝑚

• The matrix representation of 𝐿 w.r.t. the basis 𝑣 and 𝑤 is

𝐴 =

𝑎11 ⋯ 𝑎1𝑛
⋮ ⋱ ⋮

𝑎𝑚1 ⋯ 𝑎𝑚𝑛

The 𝑗𝑡ℎ-column of 𝐴 is formed by the coefficients of 𝐿 𝑣𝑗

Example

• 𝐿:ℝ2 → ℝ3, 𝑠. 𝑡. 𝑥, 𝑦 → 𝑥 + 3𝑦, 2𝑥 + 5𝑦, 7𝑥 + 9𝑦

• Find the matrix representation of 𝐿 w.r.t the standard bases of ℝ2

and ℝ3

• Answer: 𝐿 1,0 = 1,2,7 , 𝐿 0,1 = 3,5,9 , hence the matrix of 𝐿,
w.r.t the standard bases is the 3 × 2 matrix

1 3
2 5
7 9

Explicitely
• The coefficients 𝛼𝑗 and 𝛽𝑖 are related by 𝛽𝑖 = σ𝑗 𝑎𝑖𝑗𝛼𝑗

𝐿 𝑣 = 𝐿 ෍

𝑗

𝛼𝑗𝑣𝑗 =෍

𝑗

𝛼𝑗𝐿 𝑣𝑗 =෍

𝑗

𝛼𝑗෍

𝑖

𝑎𝑖𝑗𝑤𝑖

=෍

𝑖

෍

𝑗

𝑎𝑖𝑗𝛼𝑗 𝑤𝑖

This can be written as a matrix-vector product
𝑎11 ⋯ 𝑎1𝑛
⋮ ⋱ ⋮

𝑎𝑚1 ⋯ 𝑎𝑚𝑛

𝛼1
⋮
𝛼𝑛

=
𝛽1
⋮
𝛽𝑚

=෍

𝑖

𝛽𝑖 𝑤𝑖 = 𝑤

Matrix Representation

Example Matrices

Shearing
• Consider the standard basis of ℝ2

• Matrix?

• First row

𝐴
1
0

=
1
0

• Second row

𝐴
0
1

=
1.3
1

𝐴 =

Example Matrices

Shearing
• Consider the standard basis of ℝ2

• Matrix?

• First row

𝐴
1
0

=
1
0

• Second row

𝐴
0
1

=
1.3
1

𝐴 =
1 1.3
0 1

Reminder: Properties of Matrices

Symmetric Orthogonal
• 𝐴𝑇 = 𝐴 𝐴𝑇 = 𝐴−1

Product is not commutive!
• Find an example with 𝐴𝐵 ≠ 𝐵𝐴

Product of symmetric matrices may not be symmetric
• Find an example

Product of orthogonal matrices is orthogonal
𝐴𝐵 𝑇 = 𝐵𝑇𝐴𝑇 = 𝐵−1𝐴−1 = 𝐴𝐵 −1

Example of Matrices

Rotation of the plane
• Linear?

• Consider standard basis of ℝ2

Matrix?
cos 𝛼 − sin𝛼
sin 𝛼 cos 𝛼

• Transposition reverse orientation of the rotation
cos 𝛼 sin𝛼
−sin𝛼 cos 𝛼

Hence matrix is orthogonal 𝐴𝑇 = 𝐴−1

Examples of Linear Maps

Linear operators on a function space

Derivatives
• Differentiation maps functions to functions

𝜕

𝜕𝑥
: 𝐶𝑖 ℝ ↦ 𝐶𝑖−1 ℝ

𝑓 ↦
𝜕

𝜕𝑥
𝑓

Why is it linear?
• Basic rules of differentiation
𝜕

𝜕𝑥
𝑓 + 𝑔 =

𝜕

𝜕𝑥
𝑓 +

𝜕

𝜕𝑥
𝑔 and

𝜕

𝜕𝑥
𝜆𝑓 = 𝜆

𝜕

𝜕𝑥
𝑓

Matrix Representation

Derivative on a space of polynomials
• Consider polynomials of degree ≤ 3 and the monomial basis

• What is the matrix representation of the derivative?

• Solution: Evaluate
𝜕

𝜕𝑥
on the basis

•
𝜕

𝜕𝑥
1 = 0,

𝜕

𝜕𝑥
𝑥 = 1,

𝜕

𝜕𝑥
𝑥2 = 2𝑥,

𝜕

𝜕𝑥
𝑥3 = 3𝑥2

Results are the columns of the matrix
0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

Examples of Linear Maps

Integrals on 𝑪𝟎 𝒂, 𝒃
• Integration maps a continuous function to a number

𝐼: 𝐶0 𝑎, 𝑏 ↦ ℝ

𝐼 𝑓 = න
𝑎

𝑏

𝑓𝑑𝑥

• The map is linear:

න
𝑎

𝑏

𝑓 + 𝑔 𝑑𝑥 = න
𝑎

𝑏

𝑓𝑑𝑥 + න
𝑎

𝑏

𝑔𝑑𝑥

න
𝑎

𝑏

𝜆𝑓𝑑𝑥 = 𝜆න
𝑎

𝑏

𝑓𝑑𝑥

Matrix Representation

Integrals on a space of polynomials
• Consider polynomials of degree≤ 3 over the interval 0,1 and the monomial

basis.

• What is the matrix representation of the integral?

• Solution: Evaluate ׬
0

1
𝑑𝑥 on the basis

0׬
1
1𝑑𝑥 = 0׬ ,1

1
𝑥𝑑𝑥 =

1

2
0׬ ,

1
𝑥2𝑑𝑥 =

1

3
0׬ ,

1
𝑥3𝑑𝑥 =

1

4

Results are the columns of the matrix

1
1

2

1

3

1

4

Basis Transformations

Matrix representation of 𝑳

• 𝐴 = 𝑣1, 𝑣2, … , 𝑣𝑛 𝐵 = 𝑤1, 𝑤2, … , 𝑤𝑛

• Φ𝐴 𝑒𝑖 = 𝑣𝑖 Φ𝐵 𝑒𝑖 = 𝑤𝑖

• 𝑀 maps 𝑒𝑖 to Φ𝐵
−1 ∘ 𝐿 ∘ Φ𝐴 𝑒𝑖

Basis Transformations

• Basis transformation

• 𝐴 = 𝑣1, 𝑣2, … , 𝑣𝑛 ሚ𝐴 = ෤𝑣1, ෤𝑣2, … , ෤𝑣𝑛
• Φ𝐴 𝑒𝑖 = 𝑣𝑖 Φ ෨𝐴 𝑒𝑖 = ෤𝑣𝑖
• 𝑇 maps 𝑒𝑖 to Φ ෨𝐴

−1 ∘ Φ𝐴 𝑒𝑖

Basis Transformations

Basis Transformations

෩𝑀 = 𝑆𝑀𝑇−1

Basis Transformations

In the special case that 𝑉 equals 𝑊:

෩𝑀 = 𝑇𝑀𝑇−1

Interpolation & Approximation

陈仁杰

renjiec@ustc.edu.cn

http://staff.ustc.edu.cn/~renjiec

Computer Aided Geometric Design
Fall Semester 2024

mailto:renjiec@ustc.edu.cn
http://staff.ustc.edu.cn/~renjiec

Interpolation Approximation

Interpolation
General interpolation and polynomial interpolation

Interpolation Problem

• Our first attempt at modeling smooth objects:

• Given a set of points along a curve or surface

• Choose basis functions that span a suitable function space

• Smooth basis functions

• Any linear combination will be smooth, too

• Find a linear combination such that the curve/surface interpolates the given points

General Formulation

• Settings
• Domain Ω ⊆ ℝ𝑑，mapping to ℝ
• Looking for a function 𝑓:Ω → ℝ
• Basis set：𝐵 = 𝑏1, … , 𝑏𝑛 , 𝑏𝑖: Ω → ℝ
• Represent 𝑓 as linear combination𝑛of basis functions

𝑓𝜆 𝑥 = ෍

𝑘=0

𝑛

𝜆𝑖𝑏𝑖 𝑥

i.e. 𝑓 is just determined by 𝜆 =
𝜆1
…
𝜆𝑛

• Function values: 𝑥1, 𝑦1 , … , 𝑥𝑛, 𝑦𝑛 , 𝑥𝑖 , 𝑦𝑖 ∈ ℝ𝑑 × ℝ
• We want to find 𝜆 such that: 𝑓𝜆 𝑥𝑖 = 𝑦𝑖 for all 𝑖

Illustration

Solving the Interpolation Problem

• Solution: linear system of equations
• Evaluate basis functions at points 𝑥𝑖 :

∀𝑖 ∈ 1,… , 𝑛 : ෍

𝑖=1

𝑛

𝜆𝑖𝑏𝑖 𝑥𝑖 = 𝑦𝑖

• Matrix form:

𝑏1 𝑥1 ⋯ 𝑏𝑛 𝑥1
⋮ ⋱ ⋮

𝑏1 𝑥𝑛 ⋯ 𝑏𝑛 𝑥𝑛

𝜆1
⋮
𝜆𝑛

=

𝑦1
⋮
𝑦𝑛

Illustration

interpolation problem linear system

Illustration

Example

Polynomial Interpolation

• Monomial basis 𝐵 = 1, 𝑥, 𝑥2, 𝑥3, … , 𝑥𝑛−1

• Linear system to solve

1 𝑥1 … 𝑥1
𝑛−1

1 𝑥2 … 𝑥2
𝑛−1

… … … …
1 𝑥𝑛 … 𝑥𝑛

𝑛−1

𝜆1
𝜆2
…
𝜆𝑛

=

𝑦1
𝑦2
…
𝑦𝑛

Vandermonde Matrix

Example with Numbers

• Quadratic monomial basis 𝐵 = 1, 𝑥, 𝑥2

• Function values: { 0, 2 , 1, 0 , 2, 3 } 𝑥, 𝑦

• Linear system to solve:

1 0 0
1 1 1
1 2 4

𝜆1
𝜆2
𝜆3

=
2
0
3

• Result：𝜆1 = 2, 𝜆2 = −
9

2
, 𝜆3 =

5

2

Problems with interpolation

• The arising system matrix is generally dense

• Depending on the choice of the basis, the matrix can be ill-
conditioned (difficult to invert/solve)

ill-conditioning example

• Consider the system
• Clearly (1,1) is a solution

• Now perturb the right hand side of the
second equation by 0.001 (order 10−3)

• The solution is then (0.000,3.000) (order 1)

• Now consider perturbing the coefficient
• The solution (2.000, -1.000)

𝑥1 + 0.5𝑥2 = 1.5
0.667𝑥1 + 0.333𝑥2 = 1

𝑥1 + 0.5𝑥2 = 1.5
0.667𝑥1 + 0.333𝑥2 = 0.999

𝑥1 + 0.5𝑥2 = 1.5
0.667𝑥1 + 0.334𝑥2 = 1

ill-conditioning

• Small change in the input data induces relatively large change in
the output (solution)

• Thinking of equations as lines (hyperplanes), when the system is
ill-conditioned the lines become almost parallel
• Obtaining a solution (intersection) becomes difficult and imprecise

Condition number

𝜅2 𝐴 =
max
𝑥≠0

𝐴𝑥
𝑥

min
𝑥≠0

𝐴𝑥
𝑥

• Can be regarded as the ratio of highest eigenvalues / lowest eigenvalue

• When the condition number is high it reflects there is too much
interdependence between the elements of the basis

Condition Number...

• The interpolation problem is ill conditioned:

• For equidistant 𝑥𝑖，the condition number of the Vandermode
matrix grows exponentially with 𝑛
• （maximum degree+1 = number of points to interpolate）

Why is that?？

Monomial Basis:

• Functions become increasingly
indistinguishable with degree

• Only differ in growing rate
• 𝑥𝑖 grows faster than 𝑥𝑖−1

Monomial basis

Cancellation

• Monomials:

• From left to right in x- direction...
• First 1 dominates

• Then 𝑥 grows faster

• Then 𝑥2 grows faster

• Then 𝑥3 grows faster
• …

• Tendency:
• Well behaved functions often require alternating sequence of coefficients

(left turn, right turn, left turn,...)

• Cancellation problems

The Cure...

• This problem can be fixed:
• Use orthogonal polynomial basis

• How to get one? → e.g.
Gram-Schmidt orthogonalization

Alternative approach

•Can we avoid solving a system in the first place?

Alternative approach

•Can we avoid solving a system in the first place?

Think of a different basis!

Alternative approach: Example

• Pass a quadratic polynomial through (1, 2), (2,−3), (4, 0.5)

Alternative approach: Example

• Assume we can construct a quadratic polynomial 𝑃0 𝑥 such that it
is equal to 1 at 𝑥0, and equals zero at the other two points 𝑥1, 𝑥2 :

Alternative approach: Example

• 𝑃1 𝑥), is constructed similarly and set equal to 1 at location 𝑥1,
and to zero at 𝑥0, 𝑥2 :

Alternative approach: Example

• 𝑃2 𝑥 is set equal to 1 at location 𝑥2, and to zero at 𝑥0, 𝑥1

Alternative approach: Example

• Now, the idea is to scale each 𝑃𝑖 𝑥 such that 𝑃𝑖 𝑥𝑖 = 𝑦𝑖 and add
them all together:

𝑃 𝑥 = 𝑦0𝑃0 𝑥 + 𝑦1𝑃1 𝑥 + 𝑦2𝑃2 𝑥

2𝑃0 𝑥 − 3𝑃1 𝑥 0.5𝑃2 𝑥 𝑃 𝑥+ + =

Alternative approach: general case

• Construction of general solution to the interpolation problem:
• For a set of 𝑛 + 1 points 𝑥0, 𝑦0 , … , 𝑥𝑛, 𝑦𝑛 , we seek a basis of

polynomials 𝑙𝑖 of degree 𝑛 such that

𝑙𝑖 𝑥𝑗 = ቊ
1,若𝑖 = 𝑗

0,若𝑖 ≠ 𝑗

• The solution to the interpolation problem is then given as

𝑃 𝑥 = 𝑦0𝑙0 𝑥 + 𝑦1𝑙1 𝑥 +⋯+ 𝑦𝑛𝑙𝑛 𝑥 =෍

𝑖=0

𝑛

𝑦𝑖𝑙𝑖 𝑥

Alternative approach: general case

• How can we find the polynomials 𝑙𝑖 𝑥 ?

• They are polynomials of degree 𝑛 and have the following 𝑛 roots
𝑥0, 𝑥1, 𝑥2, … , 𝑥𝑖−1, 𝑥𝑖+1, … , 𝑥𝑛

• They can be expressed as
𝑙𝑖 𝑥 = 𝐶𝑖 𝑥 − 𝑥0 𝑥 − 𝑥1 … 𝑥 − 𝑥𝑖−1 𝑥 − 𝑥𝑖+1 … 𝑥 − 𝑥𝑛

= 𝐶𝑖ෑ

𝑗≠𝑖

𝑥 − 𝑥𝑗

• Since 𝑙𝑖 𝑥𝑖 = 1

1 = 𝐶𝑖ෑ

𝑗≠𝑖

𝑥𝑖 − 𝑥𝑗 ⇒ 𝐶𝑖 =
1

ς𝑗≠𝑖 𝑥𝑖 − 𝑥𝑗

Alternative approach: general case

• Finally we have

𝑙𝑖 𝑥 =
ς𝑗≠𝑖 𝑥 − 𝑥𝑗

ς𝑗≠𝑖 𝑥𝑖 − 𝑥𝑗

• The polynomials 𝑙𝑖 𝑥 are called Lagrange polynomials

Question

• Is the solution to the interpolation problem obtained using the
Lagrange polynomials different from the solution obtained using
the Vandermonde matrix (monomial basis)?

Bézier Curves

陈仁杰

renjiec@ustc.edu.cn

http://staff.ustc.edu.cn/~renjiec

Computer Aided Geometric Design
Fall Semester 2024

mailto:renjiec@ustc.edu.cn
http://staff.ustc.edu.cn/~renjiec

Bézier curves

• Bézier curves/splines developed by
• Paul de Casteljau at Citroen (1959)

• Pierre Bézier at Renault (1963)

for free-form parts in automotive design

Bézier curves

• Today: Standard tool for 2D curve editing

• Cubic 2D Bézier curves are everywhere:
• Inkscape, Corel Draw, Adobe Illustrator, Powerpoint, …

• PDF, Truetype (quadratic curves), Windows GDI, …

• Widely used in 3D curve & surface modeling as well

Curve representation

• The implicit curve form 𝑓 𝑥, 𝑦 = 0 suffers
from several limitations:

Curve representation

• The implicit curve form 𝑓 𝑥, 𝑦 = 0 suffers
from several limitations:

• Multiple values for the same 𝑥-coordinates

• Undefined derivative
𝑑𝑦

𝑑𝑥
(see blue cross)

• Not invariant w.r.t axes transformations

Parametric representation

• Remedy: parametric representation 𝑐 𝑡 = 𝑥 𝑡 , 𝑦 𝑡

• Easy evaluations

• The parameter 𝑡 can be interpreted as time

• The curve can be interpreted as the path traced by a moving particle

Modeling with the power basis, …

• Example of a parabola: 𝒇 𝑡 = 𝒂𝑡2 + 𝒃𝑡 + 𝒄

𝒇 𝑡 =
1
1

𝑡2 +
−2
0

𝑡 +
1
0

Modeling with the power basis, …
no thanks!
• Examples of a parabola: 𝒇 𝑡 = 𝒂𝑡2 + 𝒃𝑡 + 𝒄: the coefficients of

the power basis lack intuitive geometric meaning

Back to the drawing board

• A point on a parametric line

𝒃𝟏

𝒃𝟎

𝒃𝟎
𝟏

𝒃𝟎
𝟏 = 1 − 𝑡 𝒃𝟎 + 𝑡𝒃𝟏

Back to the drawing board

• Another point on a second parametric line

𝒃𝟏
𝟏 = 1 − 𝑡 𝒃𝟏 + 𝑡𝒃𝟐

𝒃𝟎
𝟏 = 1 − 𝑡 𝒃𝟎 + 𝑡𝒃𝟏

𝒃𝟏

𝒃𝟎
𝒃𝟐

𝒃𝟏
𝟏

𝒃𝟎
𝟏

Back to the drawing board

• A third point on the line defined by the first two points

𝒃𝟏

𝒃𝟎
𝒃𝟐

𝒃𝟏
𝟏

𝒃𝟎
𝟏

𝒃𝟎
𝟐

𝒃𝟎
𝟐 = 1 − 𝑡 𝒃𝟎

𝟏 + 𝑡𝒃𝟏
𝟏

𝒃𝟏
𝟏 = 1 − 𝑡 𝒃𝟏 + 𝑡𝒃𝟐

𝒃𝟎
𝟏 = 1 − 𝑡 𝒃𝟎 + 𝑡𝒃𝟏

Back to the drawing board

• And then simplify…

𝒃𝟎
𝟏 = 1 − 𝑡 𝒃𝟎 + 𝑡𝒃𝟏

𝒃𝟎
𝟐 = 1 − 𝑡 𝒃𝟎

𝟏 + 𝑡𝒃𝟏
𝟏

𝒃𝟏
𝟏 = 1 − 𝑡 𝒃𝟏 + 𝑡𝒃𝟐

𝒃𝟎
𝟐 = 1 − 𝑡 1 − 𝑡 𝒃𝟎 + 𝑡𝒃𝟏 + 𝑡 1 − 𝑡 𝒃𝟏 + 𝑡𝒃𝟐

𝒃𝟎
𝟐 = 1 − 𝑡 2𝒃𝟎 + 2𝑡 1 − 𝑡 𝒃𝟏 + 𝑡2𝒃𝟐

𝒃𝟏

𝒃𝟎
𝒃𝟐

𝒃𝟏
𝟏

𝒃𝟎
𝟏

𝒃𝟎
𝟐

Back to the drawing board

• We obtained another description of
parabolic curves

• The coefficients 𝒃𝟎, 𝒃𝟏, 𝒃𝟐 have a
geometric meaning

𝒃𝟎
𝟐 = 1 − 𝑡 2𝒃𝟎 + 2𝑡 1 − 𝑡 𝒃𝟏 + 𝑡2𝒃𝟐

𝒃𝟏

𝒃𝟎
𝒃𝟐

𝒃𝟏
𝟏

𝒃𝟎
𝟏

𝒃𝟎
𝟐

Example re-visited

• Let’s rewrite our initial parabolic curve example in the new basis

𝒇 𝑡 =
1
1

𝑡2 +
−2
0

𝑡 +
1
0

𝒇 𝑡 =
1
0

1 − 𝑡 2 +
0
0

2𝑡 1 − 𝑡 +
0
1

𝑡2

Example re-visited

• The coefficient have a geometric meaning

• More intuitive for curve manipulation

Another example

𝒃0 =
0
1

, 𝒃1 =
1
1

, 𝒃2 =
0
2

Going further

• Cubic approximation

• Given 4 points: 𝒑0
0 𝑡 = 𝒑0, 𝒑1

0 𝑡 = 𝒑1, 𝒑2
0 𝑡 = 𝒑2, 𝒑3

0 𝑡 = 𝒑3

• First iteration

• 2nd iteration

• Curve
𝒄 𝑡 = 1 − 𝑡 3𝒑0 + 3𝑡 1 − 𝑡 2𝒑1 + 3𝑡2 1 − 𝑡 𝒑2 + 𝑡3𝒑3

𝒑0
2 = 1 − 𝑡 2𝒑0 + 2𝑡 1 − 𝑡 𝒑1 + 𝑡2𝒑2

𝒑1
2 = 1 − 𝑡 2𝒑1 + 2𝑡 1 − 𝑡 𝒑2 + 𝑡2𝒑3

𝒑0
1 = 1 − 𝑡 𝒑0 + 𝑡𝒑1

𝒑1
1 = 1 − 𝑡 𝒑1 + 𝑡𝒑2

𝒑2
1 = 1 − 𝑡 𝒑2 + 𝑡𝒑3

Throughout these examples, we just
re-invented a primitive version of the
de Casteljau algorithm

Now let’s examine it more closely …

De Casteljau algorithm

• De Casteljau Algorithm: Computes 𝑥 𝑡 for given 𝑡
• Bisect control polygon in ratio 𝑡: 1 − 𝑡

• Connect the new dots with lines (adjacent segments)

• Interpolate again with the same ratio

• Iterate, until only one points is left

De Casteljau algorithm

• De Casteljau Algorithm: Computes 𝑥 𝑡 for given 𝑡
• Bisect control polygon in ratio 𝑡: 1 − 𝑡

• Connect the new dots with lines (adjacent segments)

• Interpolate again with the same ratio

• Iterate, until only one points is left

De Casteljau algorithm

• De Casteljau Algorithm: Computes 𝑥 𝑡 for given 𝑡
• Bisect control polygon in ratio 𝑡: 1 − 𝑡

• Connect the new dots with lines (adjacent segments)

• Interpolate again with the same ratio

• Iterate, until only one points is left

De Casteljau algorithm

• De Casteljau Algorithm: Computes 𝑥 𝑡 for given 𝑡
• Bisect control polygon in ratio 𝑡: 1 − 𝑡

• Connect the new dots with lines (adjacent segments)

• Interpolate again with the same ratio

• Iterate, until only one points is left

De Casteljau algorithm

• Algorithm description
• Input: points 𝒃0, 𝒃1, …𝒃𝑛 ∈ ℝ3

• Output: curve 𝒙 𝑡 , 𝑡 ∈ 0,1

• Geometric construction of the points 𝒙 𝑡 for given 𝑡:

𝒃𝑖
0 𝑡 = 𝒃𝑖 , 𝑖 = 0,… , 𝑛

𝒃𝑖
𝑟 𝑡 = 1 − 𝑡 𝒃𝑖

𝑟−1 𝑡 + 𝑡 𝒃𝑖+1
𝑟−1 𝑡

𝑟 = 1,… , 𝑛 𝑖 = 0,… , 𝑛 − 𝑟

• Then 𝒃0
𝑛 𝑡 is the searched curve point 𝒙 𝑡 at the parameter value 𝑡

De Casteljau algorithm

• Repeated convex combination of control points

𝒃𝑖
𝑟
= 1 − 𝑡 𝒃𝑖

𝑟−1 +𝑡𝒃𝑖+1
𝑟−1

𝒃0
0

𝒃1
0

𝒃2
0

𝒃3
0

De Casteljau algorithm

• Repeated convex combination of control points

𝒃𝑖
𝑟
= 1 − 𝑡 𝒃𝑖

𝑟−1 +𝑡𝒃𝑖+1
𝑟−1

𝒃0
0

𝒃1
0

𝒃2
0

𝒃3
0

𝑡
𝒃0

1

𝒃1
1

𝒃2
1

𝑡

𝑡

De Casteljau algorithm

• Repeated convex combination of control points

𝒃𝑖
𝑟
= 1 − 𝑡 𝒃𝑖

𝑟−1 +𝑡𝒃𝑖+1
𝑟−1

𝒃0
0

𝒃1
0

𝒃2
0

𝒃3
0

𝑡
𝒃0

1

𝒃1
1

𝒃2
1

𝑡

𝑡

𝑡

𝑡

𝒃0
2

𝒃1
2

De Casteljau algorithm

• Repeated convex combination of control points

𝒃𝑖
𝑟
= 1 − 𝑡 𝒃𝑖

𝑟−1 +𝑡𝒃𝑖+1
𝑟−1

𝒃0
0

𝒃1
0

𝒃2
0

𝒃3
0

𝑡
𝒃0

1

𝒃1
1

𝒃2
1

𝑡

𝑡

𝑡

𝑡

𝒃0
2

𝒃1
2 𝑡 𝒃0

3
= 𝑥(𝑡)

De Casteljau scheme

De Casteljau algorithm

• The intermediate coefficients 𝒃𝑖
𝑟 𝑡 can be written in a triangular matrix: the

de Casteljau scheme:

• 𝒃0 = 𝒃0
0

• 𝒃1 = 𝒃1
0 𝒃0

1

• 𝒃2 = 𝒃2
0 𝒃1

1 𝒃0
2

• 𝒃3 = 𝒃3
0 𝒃2

1 𝒃1
2 𝒃0

3

• ……………………

• 𝒃𝑛−1 = 𝒃𝑛−1
0 𝒃𝑛−2

1 … 𝒃0
𝑛−1

• 𝒃𝑛 = 𝒃𝑛
0 𝒃𝑛−1

1 … 𝒃1
𝑛−1 𝒃0

𝑛 = 𝑥 𝑡

De Casteljau algorithm

• Algorithm:

• for r=1..n

• for i=0..n-r

• 𝒃𝑖
𝑟
= 1 − 𝑡 𝒃𝑖

𝑟−1
+ 𝑡 𝒃𝑖+1

𝑟−1

• end

• end

• return 𝒃0
𝑛

The whole algorithm consists only of
repeated linear interpolations.

De Casteljau algorithm: Properties

• The polygon consisting of the points 𝒃𝟎, … , 𝒃𝒏 is called Bézier polygon
(control polygon)

• The points 𝒃𝒊 are called Bézier points (control points)

• The curve defined by the Bézier points 𝒃𝟎, … , 𝒃𝒏 and the de Casteljau
algorithm is called Bézier curve

• The de Casteljau algorithm is numerically stable, since only convex
combinations are applied.

• Complexity of the de Casteljau algorithm
• 𝑂 𝑛2 time
• 𝑂 𝑛 memory
• with 𝑛 being the number of Bézier points

De Casteljau algorithm: Properties

• Properties of Bézier curves:
• Given: Bézier points 𝒃0, … , 𝒃𝑛

Bézier curve 𝒙 𝑡

• Bézier curve is polynomial curve of degree 𝑛

• End points interpolation: 𝒙 0 = 𝒃0, 𝒙 1 = 𝒃𝑛. The remaining Bézier
points are only approximated in general

• Convex hull property:

Bézier curve is completely inside the convex hull of its Bézier polygon

De Casteljau algorithm: Properties

• Variation diminishing
• No line intersects the Bézier curve more often than its Bézier polygon

• Influence of Bézier points: global but pseudo-local
• Global: moving a Bézier points changes the whole curve progression

• Pseudo-local: 𝒃𝑖 has its maximal influence on 𝑥 𝑡 at 𝑡 =
𝑖

𝑛

• Affine invariance:
• Bézier curve and Bézier polygon are invariant under affine

transformations

• Invariance under affine parameter transformations

De Casteljau algorithm: Properties

• Symmetry
• The following two Bézier curves coincide, they are only traversed in

opposite directions:

𝒙 𝑡 = 𝒃0, … , 𝒃𝑛 𝒙′ 𝑡 = 𝒃𝑛, … 𝒃0

• Linear Precision:
• Bézier curve is line segment, if 𝒃0, … , 𝒃𝑛 are colinear

• Invariance under barycentric combinations

Bézier Curves
Towards a polynomial description

Bézier Curves
Towards a polynomial description

𝑥 𝑡 =෍

𝑖=0

𝑛

𝐵𝑖
𝑛 𝑡 ⋅ 𝑏𝑖

Polynomial description of Bézier curves

• The same problem as before:
• Given: 𝑛 + 1 control points 𝒃0, … , 𝒃𝑛
• Wanted: Bézier curve 𝒙 𝑡 with 𝑡 ∈ 0,1

• Now with an algebraic approach using basis functions

Desirable Properties

• Useful requirements for a basis:
• Well behaved curve

• Smooth basis functions

Desirable Properties

• Useful requirements for a basis:
• Well behaved curve

• Smooth basis functions

• Local control (or at least semi-local)
• Basis functions with compact support

Desirable Properties

• Useful requirements for a basis:
• Well behaved curve

• Smooth basis functions

• Local control (or at least semi-local)
• Basis functions with compact support

• Affine invariance:
• Appling an affine map 𝒙 → 𝐴𝒙 + 𝑏 on

• Control points

• Curve

Should have the same effect

• In particular: rotation, translation

• Otherwise: interactive curve editing very difficult

Desirable Properties

• Useful requirements for a basis:
• Convex hull property:

• The curve lays within the convex hull of its control points

• Avoids at least too weird oscillations

• Advantages
• Computational advantages (recursive intersection tests)

• More predictable behavior

Summary

• Useful properties
• Smoothness

• Local control / support

• Affine invariance

• Convex hull property

Curve basis function control points

𝒇 𝑡 =෍

𝑖=1

𝑛

𝑏𝑖 𝑡 𝒑𝑖

Notations

Affine Invariance

• Affine map: 𝒙 → 𝐴𝒙 + 𝒃

• Part I: Linear invariance – we get this automatically

• Linear approach: 𝒇 𝑡 = σ𝑖=1
𝑛 𝑏𝑖 𝑡 𝒑𝑖 = σ𝑖=1

𝑛 𝑏𝑖 𝑡

𝑝𝑖
𝑥

𝑝𝑖
𝑦

𝑝𝑖
𝑧

• Therefore: 𝐴 𝒇 𝑡 = 𝐴 σ𝑖=1
𝑛 𝑏𝑖 𝑡 𝒑𝑖 = σ𝑖=1

𝑛 𝑏𝑖 𝑡 𝐴𝒑𝑖

Affine Invariance

• Affine Invariance:
• Affine map: 𝒙 → 𝐴𝒙 + 𝒃

• Part II: Translational invariance

෍

𝑖=1

𝑛

𝑏𝑖 𝑡 𝒑𝑖 + 𝒃 =෍

𝑖=1

𝑛

𝑏𝑖 𝑡 𝒑𝑖 +෍

𝑖=1

𝑛

𝑏𝑖 𝑡 𝒃 = 𝒇 𝑡 + ෍

𝑖=1

𝑛

𝑏𝑖 𝑡 𝒃

• For translational invariance, the sum of the basis functions must be one everywhere
(for all parameter values 𝑡 that are used).

• This is called “partition of unity property”

• The 𝑏𝑖’s form an “affine combination” of the control points 𝒑𝑖
• This is very important for modeling

Convex Hull Property

• Convex combinations:
• A convex combination of a set of points 𝒑1, … , 𝒑𝑛 is any point of the form:

σ𝑖=1
𝑛 𝜆𝑖𝒑𝒊 with σ𝑖=1

𝑛 𝜆𝑖 = 1 and ∀𝑖 = 1…𝑛: 0 ≤ 𝜆𝑖 ≤ 1

• (Remark: 𝜆𝑖 ≤ 1 is redundant)

• The set of all admissible convex combinations forms the convex hull of the
point set
• Easy to see (exercise): The convex hull is the smallest set that contains all points

𝒑1, … , 𝒑𝑛 and every complete straight line between two elements of the set

Convex Hull Property

• Accordingly:
• If we have this property
∀𝑡 ∈ Ω:σ𝑖=1

𝑛 𝑏𝑖 𝑡 = 1 and ∀𝑡 ∈ Ω, ∀𝑖: 𝑏𝑖 𝑡 ≥ 0

the constructed curves / surfaces will be:
• Affine invariant (translations, linear maps)

• Be restricted to the convex hull of the control points

• Corollary: Curves will have linear precision
• All control points lie on a straight line

⇒ Curve is a straight line segment

• Surfaces with planar control points will be flat, too

Convex Hull Property

• Very useful property in practice
• Avoids at least the worst oscillations

• no escape from convex hull, unlike polynomial interpolation

• Linear precision property is intuitive (people expect this)

• Can be used for fast range checks
• Test for intersection with convex hull first, then the object

• Recursive intersection algorithms in conjunctions with subdivision rules (more on
this later)

Polynomial description of Bézier curves

• The same problem as before:
• Given: 𝑛 + 1 control points 𝒃0, … , 𝒃𝑛
• Wanted: Bézier curve 𝑥 𝑡 with 𝑡 ∈ 0,1

• Now with an algebraic approach using basis functions

• Need to define 𝑛 + 1 basis functions
• Such that this describes a Bézier curve:

𝐵0
𝑛 𝑡 , … , 𝐵𝑛

𝑛 𝑡 over 0,1

𝒙 𝑡 =෍

𝑖=0

𝑛

𝐵𝑖
𝑛 𝑡 ⋅ 𝒃𝑖

Bernstein Basis

• Let’s examine the Bernstein basis: 𝐵 = {𝐵0
𝑛
, 𝐵1

𝑛
, … , 𝐵𝑛

𝑛
}

• Bernstein basis of degree 𝑛:

𝐵𝑖
𝑛

𝑡 =
𝑛
𝑖
𝑡𝑖 1 − 𝑡 𝑛−𝑖 = 𝐵𝑖−th basis function

degree

where the binomial coefficients are given by:

𝑛
𝑖

= ቐ

𝑛!

𝑛 − 𝑖 ! 𝑖!
for 0 ≤ 𝑖 ≤ 𝑛

0 otherwise

Binomial Coefficients and Theorem

𝑥 + 𝑦 𝑛 =෍

𝑖=0

𝑛
𝑛
𝑖

𝑥𝑖𝑦𝑛−𝑖

𝑛
𝑖

+
𝑛

𝑖 + 1
=

𝑛 + 1
𝑖 + 1

Examples: The first few

• The first three Bernstein bases:

• 𝐵0
0
≔ 1

• 𝐵0
1
≔ 1− 𝑡 𝐵1

1
≔ 𝑡

• 𝐵0
2
≔ 1− 𝑡 2 𝐵1

2
≔ 2𝑡 1 − 𝑡 𝐵2

2
≔ 𝑡2

• 𝐵0
3
≔ 1− 𝑡 3 𝐵1

3
≔ 3𝑡 1 − 𝑡 2 𝐵2

3
≔ 3𝑡2 1 − 𝑡 𝐵3

3
≔ 𝑡3

𝐵𝑖
𝑛

𝑡 =
𝑛
𝑖

𝑡𝑖 1 − 𝑡 𝑛−𝑖

Examples: The first few

• 𝐵0
3
≔ 1− 𝑡 3

• 𝐵1
3
≔ 3𝑡 1 − 𝑡 2

• 𝐵2
3
≔ 3𝑡2 1 − 𝑡

• 𝐵3
3
≔ 𝑡3

𝐵𝑖
𝑛

𝑡 =
𝑛
𝑖

𝑡𝑖 1 − 𝑡 𝑛−𝑖

𝐵0
0
≔ 1

𝐵0
1
≔ 1− 𝑡

𝐵1
1
≔ 𝑡

𝐵0
2
≔ 1− 𝑡 2

𝐵1
2
≔ 2𝑡 1 − 𝑡

𝐵2
2
≔ 𝑡2

Bernstein Basis

• Bézier curves use the Bernstein basis: 𝐵 = 𝐵0
𝑛
, 𝐵1

𝑛
, … , 𝐵𝑛

𝑛

• Bernstein basis of degree 𝑛:

𝐵𝑖
𝑛

𝑡 =
𝑛
𝑖
𝑡𝑖 1 − 𝑡 𝑛−𝑖 = 𝐵𝑖−th basis function

degree

Bernstein Basis

• What about the desired properties?
• Smoothness

• Local control / support

• Affine invariance

• Convex hull property

Bernstein Basis: Properties

• 𝐵 = 𝐵0
𝑛
, 𝐵1

𝑛
, … , 𝐵𝑛

𝑛 , 𝐵𝑖
𝑛

𝑡 =
𝑛
𝑖

𝑡𝑖 1 − 𝑡 𝑛−𝑖

• Basis for polynomials of degree 𝑛

• Each basis function 𝐵𝑖
𝑛 has its maximum at 𝑡 =

𝑖

𝑛

Smoothness

Local control (semi-local)

Bernstein Basis: Properties

• 𝐵 = 𝐵0
𝑛
, 𝐵1

𝑛
, … , 𝐵𝑛

𝑛 , 𝐵𝑖
𝑛

𝑡 =
𝑛
𝑖

𝑡𝑖 1 − 𝑡 𝑛−𝑖

• Partition of unity (binomial theorem)
1 = 1 − 𝑡 + 𝑡

෍

𝑖=0

𝑛

𝐵𝑖
𝑛

𝑡 = 𝑡 + 1 − 𝑡
𝑛
= 1

Affine invariance Convex hull property

What about the desired properties?

• Smoothness

• Local control / support

• Affine invariance

• Convex hull property

Yes
To some extent
Yes
Yes

Bernstein Basis: Properties

• 𝐵 = 𝐵0
𝑛
, 𝐵1

𝑛
, … , 𝐵𝑛

𝑛 , 𝐵𝑖
𝑛

𝑡 =
𝑛
𝑖

𝑡𝑖 1 − 𝑡 𝑛−𝑖

• Recursive computation

𝐵𝑖
𝑛 𝑡 ≔ 1 − 𝑡 𝐵𝑖

𝑛−1
𝑡 + 𝑡𝐵𝑖−1

𝑛−1
1 − 𝑡

with 𝐵0
0 𝑡 = 1, 𝐵𝑖

𝑛 𝑡 = 0 for 𝑖 ∉ 0…𝑛

• Symmetry
𝐵𝑖
𝑛 𝑡 = 𝐵𝑛−𝑖

𝑛 1 − 𝑡

• Non-negativity: 𝐵𝑖
𝑛

𝑡 ≥ 0 for 𝑡 ∈ [0. . 1]

𝑛 − 1
𝑖

+
𝑛 − 1
𝑖 − 1

=
𝑛
𝑖

Bernstein Basis: Properties

• 𝐵 = 𝐵0
𝑛
, 𝐵1

𝑛
, … , 𝐵𝑛

𝑛 , 𝐵𝑖
𝑛

𝑡 =
𝑛
𝑖

𝑡𝑖 1 − 𝑡 𝑛−𝑖

• Non-negativity II

𝐵𝑖
𝑛 𝑡 > 0 for 0 < 𝑡 < 1

𝐵0
𝑛 0 = 1, 𝐵1

𝑛 0 = ⋯ = 𝐵𝑛
𝑛 0 = 0

𝐵0
𝑛 1 = ⋯ = 𝐵𝑛−1

𝑛 1 = 0, 𝐵𝑛
𝑛 1 = 1

Bézier Curves (continue)

陈仁杰

renjiec@ustc.edu.cn

http://staff.ustc.edu.cn/~renjiec

Computer Aided Geometric Design
Fall Semester 2024

mailto:renjiec@ustc.edu.cn
http://staff.ustc.edu.cn/~renjiec

Recap

de Casteljau algorithm

Bernstein form

Recap

Useful properties for basis functions

• Smoothness

• Local control / support

• Affine invariance

• Convex hull property

Curve basis function control points

𝒇 𝑡 =෍

𝑖=1

𝑛

𝐵𝑖 𝑡 𝒑𝑖

Bernstein form

Degree elevation

• Given: 𝒃0,…,𝒃𝑛 → 𝒙 𝑡

• Wanted: ഥ𝒃0, … , ഥ𝒃𝑛, ഥ𝒃𝑛+1 → ഥ𝒙 𝑡 with 𝒙 = ഥ𝒙

• Solution:

Degree elevation

• Given: 𝒃0,…,𝒃𝑛 → 𝒙 𝑡

• Wanted: ഥ𝒃0, … , ഥ𝒃𝑛, ഥ𝒃𝑛+1 → ഥ𝒙 𝑡 with 𝒙 = ഥ𝒙

• Solution:
ഥ𝒃0 = 𝒃𝟎
ഥ𝒃𝑛+1 = 𝒃𝑛

ഥ𝒃𝑗 =
𝑗

𝑛+1
𝒃𝑗−1 + 1 −

𝑗

𝑛+1
𝒃𝑗 for 𝑗 = 1,… , 𝑛

Proof

• Let’s consider

1 − 𝑡 𝐵𝑖
𝑛 𝑡 = 1 − 𝑡

𝑛
𝑖

1 − 𝑡 𝑛−𝑖𝑡𝑖 =
𝑛
𝑖

1 − 𝑡 𝑛+1−𝑖𝑡𝑖

=
𝑛 + 1 − 𝑖

𝑛 + 1
𝑛 + 1
𝑖

1 − 𝑡 𝑛+1−𝑖𝑡𝑖

=
𝑛 + 1 − 𝑖

𝑛 + 1
𝐵𝑖
𝑛+1 𝑡

Similarly

𝑡𝐵𝑖
𝑛 𝑡 =

𝑖 + 1

𝑛 + 1
𝐵𝑖+1
𝑛+1 𝑡

Proof

𝒇 𝑡 = 1 − 𝑡 + 𝑡 𝒇 𝑡 = 1 − 𝑡 + 𝑡 ෍

𝑖=0

𝑛

𝐵𝑖
𝑛 𝑡 𝑷𝑖 =෍

𝑖=0

𝑛

1 − 𝑡 𝐵𝑖
𝑛 𝑡 + 𝑡𝐵𝑖

𝑛 𝑡 𝑷𝑖

=෍

𝑖=0

𝑛
𝑛 + 1 − 𝑖

𝑛 + 1
𝐵𝑖
𝑛+1 𝑡 +

𝑖 + 1

𝑛 + 1
𝐵𝑖+1
𝑛+1 𝑡 𝑷𝑖 =෍

𝑖=0

𝑛
𝑛 + 1 − 𝑖

𝑛 + 1
𝐵𝑖
𝑛+1 𝑡 𝑷𝑖 +෍

𝑖=0

𝑛
𝑖 + 1

𝑛 + 1
𝐵𝑖+1
𝑛+1 𝑡 𝑷𝑖

=෍

𝑖=0

𝑛
𝑛 + 1 − 𝑖

𝑛 + 1
𝐵𝑖
𝑛+1 𝑡 𝑷𝑖 +෍

𝑖=1

𝑛+1
𝑖

𝑛 + 1
𝐵𝑖
𝑛+1 𝑡 𝑷𝑖−1

= ෍

𝑖=0

𝑛+1
𝑛 + 1 − 𝑖

𝑛 + 1
𝐵𝑖
𝑛+1 𝑡 𝑷𝑖 +෍

𝑖=0

𝑛+1
𝑖

𝑛 + 1
𝐵𝑖
𝑛+1 𝑡 𝑷𝑖−1

= ෍

𝑖=0

𝑛+1

𝐵𝑖
𝑛+1 𝑡

𝑛 + 1 − 𝑖

𝑛 + 1
𝑷𝑖 +

𝑖

𝑛 + 1
𝑷𝑖−1

U
si

n
g

 r
es

u
lt
s

fr
o

m

la
st

 s
lid

e

Adding null terms, 𝑖 = 𝑛 + 1, 𝑖 = 0

Degree elevation: Example

• ഥ𝒃0 = 𝒃0 ഥ𝒃𝑗 =
𝑗

𝑛+1
𝒃𝑗−1 + 1 −

𝑗

𝑛+1
𝒃𝑗

• ഥ𝒃𝑛+1 = 𝒃𝑛 𝑗 = 1,… , 𝑛

Degree elevation: Example

• ഥ𝒃0 = 𝒃0 ഥ𝒃𝑗 =
𝑗

𝑛+1
𝒃𝑗−1 + 1 −

𝑗

𝑛+1
𝒃𝑗

• ഥ𝒃𝑛+1 = 𝒃𝑛 𝑗 = 1,… , 𝑛

1

Degree elevation: Example

• ഥ𝒃0 = 𝒃0 ഥ𝒃𝑗 =
𝑗

𝑛+1
𝒃𝑗−1 + 1 −

𝑗

𝑛+1
𝒃𝑗

• ഥ𝒃𝑛+1 = 𝒃𝑛 𝑗 = 1,… , 𝑛

𝟑

𝟒

𝟏

𝟒

Degree elevation: Example

• ഥ𝒃0 = 𝒃0 ഥ𝒃𝑗 =
𝑗

𝑛+1
𝒃𝑗−1 + 1 −

𝑗

𝑛+1
𝒃𝑗

• ഥ𝒃𝑛+1 = 𝒃𝑛 𝑗 = 1,… , 𝑛

𝟏

𝟐

𝟏

𝟐

Degree elevation: Example

• ഥ𝒃0 = 𝒃0 ഥ𝒃𝑗 =
𝑗

𝑛+1
𝒃𝑗−1 + 1 −

𝑗

𝑛+1
𝒃𝑗

• ഥ𝒃𝑛+1 = 𝒃𝑛 𝑗 = 1,… , 𝑛

𝟑

𝟒

𝟏

𝟒

Degree elevation: Example

• ഥ𝒃0 = 𝒃0 ഥ𝒃𝑗 =
𝑗

𝑛+1
𝒃𝑗−1 + 1 −

𝑗

𝑛+1
𝒃𝑗

• ഥ𝒃𝑛+1 = 𝒃𝑛 𝑗 = 1,… , 𝑛

𝟏

Degree elevation: Example

• ഥ𝒃0 = 𝒃0 ഥ𝒃𝑗 =
𝑗

𝑛+1
𝒃𝑗−1 + 1 −

𝑗

𝑛+1
𝒃𝑗

• ഥ𝒃𝑛+1 = 𝒃𝑛 𝑗 = 1,… , 𝑛

Degree elevation

For repeated degree elevation, the Bézier polygon converges to
the Bézier curve. (slow convergence)

Degree elevation

• ഥ𝒃0 = 𝒃0 ഥ𝒃𝑗 =
𝑗

𝑛+1
𝒃𝑗−1 + 1 −

𝑗

𝑛+1
𝒃𝑗

• ഥ𝒃𝑛+1 = 𝒃𝑛 𝑗 = 1,… , 𝑛

Bézier Curves
Subdivision

Subdivision

• Given: 𝑏0, … , 𝑏𝑛 → 𝑥 𝑡 , 𝑡 ∈ 0,1

• Wanted: 𝑏0
1
, … , 𝑏𝑛

1
→ 𝑥 1 𝑡 ,

𝑏0
2
, … , 𝑏𝑛

2
→ 𝑥 2 𝑡 ,

with 𝑥 = 𝑥 1 ∪ 𝑥 2

Subdivision: Example

de Casteljau scheme

Subdivision: Example

de Casteljau scheme

Subdivision

Solution: 𝑏𝑖
1
= 𝑏0

𝑖 , 𝑏𝑖
2
= 𝑏0

𝑛−𝑖 for 𝑖 = 0,… , 𝑛

That means that the new points are intermediate points of the
de Casteljau algorithm!

Curve range

Curve range

Summary & Outlook

• Bézier curves and curve design
• The rough form is specified by the position of the control points

• Results: smooth curve approximating the control points

• Computation / Representation:
• de Casteljau algorithm

• Bernstein form

• Problems:
• High polynomial degree

• Moving a control point can change the whole curve

• Interpolation of points

• →Bézier splines

Matrix representations
(common in software implementations)

Homogeneous coordinates

𝑃 =

𝑥1 𝑦1 𝑧1 1
𝑥2 𝑦2 𝑧2 1
𝑥3 𝑦3 𝑧3 1
… … … …
𝑥𝑛 𝑦𝑛 𝑧𝑛 1

Transformations

• Basic representation 𝑃∗ = 𝑃 𝑇

𝑃∗ is the new coordinates matrix

𝑃 is the original coordinates matrix, or points matrix

𝑇 is the transformation matrix

Transformations

• Translation (2D example)

𝑇𝑡 =

1 0 0 0
0 1 0 0
0 0 1 0
𝑥 𝑦 0 1

𝑃∗ = 𝑃 𝑇𝑡

Transformations

• Basic representation 𝑃∗ = 𝑃 𝑇

𝑃∗ is the new coordinates matrix

𝑃 is the original coordinates matrix, or points matrix

𝑇 is the transformation matrix

𝑃 =

𝑥1 𝑦1 0
𝑥2 𝑦2 0
𝑥3 𝑦3 0
… … …
𝑥𝑛 𝑦𝑛 0

Transformations

• Uniform scaling

𝑇 =

𝑠 0 0 0
0 𝑠 0 0
0 0 𝑠 0
0 0 0 1

• Non-uniform scaling

𝑇 =

𝑠𝑥 0 0 0
0 𝑠𝑦 0 0

0 0 𝑠𝑧 0
0 0 0 1

Transformations

• Rotation 2D

ൠ
𝑥 = 𝑟 cos𝛼
𝑦 = 𝑟 sin 𝛼 Original coordinates of point 𝑃

ቋ
𝑥∗ = 𝑟 cos 𝛼 + 𝜃
𝑦∗ = 𝑟 sin 𝛼 + 𝜃

The new coordinates

𝑥∗ 𝑦∗ 0 1 = 𝑥 𝑦 0 1

cos 𝜃 sin 𝜃 0 0
− sin 𝜃 cos 𝜃 0 0

0 0 1 0
0 0 0 1

Transformations

• Rotation about an arbitrary axis (2D)
• Translate the fixed axis so it coincides with z-axis

→ apply to object

• Rotate object about the axis

• Translate object back

𝑃∗ = 𝑃 𝑇𝑡 𝑇𝑟 𝑇−𝑡

Transformations

• Rotation about an arbitrary axis (2D)

Step 1: Translate the fixed axis so it coincides with z-axis

Step 2: Rotate object about the axis

Step 3: Translate the fixed axis back to the original position

𝑃∗ = 𝑃 𝑇𝑡 𝑇𝑟 𝑇−𝑡

Transformations

• Scaling with an arbitrary point 𝑥, 𝑦

𝑃∗ = 𝑃 𝑇𝑡 𝑇𝑠 𝑇−𝑡

=

1 0 0 0
0 1 0 0
0 0 1 0
−𝑥 −𝑦 0 1

𝑠 0 0 0
0 𝑠 0 0
0 0 𝑠 0
0 0 0 1

1 0 0 0
0 1 0 0
0 0 1 0
𝑥 𝑦 0 1

=

𝑠 0 0 0
0 𝑠 0 0
0 0 𝑠 0

𝑥 − 𝑠𝑥 𝑦 − 𝑠𝑦 0 1

Transformations

• Rotation about an arbitrary point 𝑥, 𝑦

𝑇cond = 𝑇𝑡 𝑇𝑠 𝑇−𝑡

=

1 0 0 0
0 1 0 0
0 0 1 0
−𝑥 −𝑦 0 1

cos 𝜃 sin 𝜃 0 0
−sin 𝜃 cos 𝜃 0 0

0 0 1 0
0 0 0 1

1 0 0 0
0 1 0 0
0 0 1 0
𝑥 𝑦 0 1

Transformations

• Mirroring about x-axis (negative scaling along y-axis)

𝑃∗ = 2 2 0 1

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

= 2 −2 0 1

Transformations

• Mirroring about arbitrary axis

• Translate line to pass through origin

• Rotate axis to coincide with 𝑥-axis

• Mirror about 𝑥-axis

• Rotate back

• Translate back to original position

𝑃∗ = 𝑃 𝑇𝑡 𝑇𝑟 𝑇𝑚 𝑇−𝑟 𝑇−𝑡

Transformations

• Rotation about coordinates axes (3D)

𝑇𝑟𝑧 =

cos 𝜃 sin 𝜃 0 0
− sin 𝜃 cos 𝜃 0 0

0 0 1 0
0 0 0 1

𝑇𝑟𝑥 =

1 0 0 0
0 cos 𝜃 sin 𝜃 0
0 − sin 𝜃 cos 𝜃 0
0 0 0 1

𝑇𝑟𝑦 =

cos 𝜃 0 − sin 𝜃 0
0 1 0 0

sin 𝜃 0 cos 𝜃 0
0 0 0 1

Transformations

• Rotation 𝜃 about an arbitrary axis (3D)
1. Translate the given line so that it will pass through the origin

2. Rotate about the 𝑥-axis so that the line lies in the 𝑥𝑧-plane (angle 𝛼)

3. Rotate about the 𝑦-axis so that the line coincides with the 𝑧-axis (angle 𝜙)

4. Rotate the geometric object about the 𝑧-axis (angle 𝜃 – given rotation angle)

5. Reverse of step 3

6. Reverse of step 2

7. Reverse of step 1

𝑃∗ = 𝑃 𝑇𝑡 𝑇𝑟 𝛼 𝑇𝑟 𝜙 𝑇𝑟 𝜃 𝑇𝑟 −𝜙 𝑇𝑟 −𝛼 𝑇−𝑡

Alternatively you can use Quaternions!

Bézier Curves

• Cubic Bézier curves 𝑓 𝑡 = 𝑃0𝐵0
3
+ 𝑃1𝐵1

3
+ 𝑃2𝐵2

3
+ 𝑃3𝐵3

3

𝐵0
3

𝑡 =
3!

0! 3!
𝑡0 1 − 𝑡 3 = 1 − 𝑡 3

𝐵1
3
=

3!

1! 2!
𝑡1 1 − 𝑡 2 = 3𝑡 1 − 𝑡 2

𝐵2
3
=

3!

2! 1!
𝑡2 1 − 𝑡 1 = 3𝑡2 1 − 𝑡

𝐵3
3
=

3!

3! 0!
𝑡3 1 − 𝑡 0 = 𝑡3

Bézier Curves

• Cubic Bézier curves 𝑓 𝑡 = 𝑃0𝐵0
3
+ 𝑃1𝐵1

3
+ 𝑃2𝐵2

3
+ 𝑃3𝐵3

3

• In Matrix form:

• -The curve

• -The tangent

𝑓 𝑡 = 𝑡3 𝑡2 𝑡 1

−1 3 −3 1
3 −6 3 0
−3 3 0 0
1 0 0 0

𝑃0
𝑃1
𝑃2
𝑃3

𝑓′ 𝑡 = 3𝑡2 2𝑡 1 0

−1 3 −3 1
3 −6 3 0
−3 3 0 0
1 0 0 0

𝑃0
𝑃1
𝑃2
𝑃3

B-spline Curves (to be covered later)

• Uniform cubic B-Spline curve

𝑓𝑖 𝑡 =
1

6
𝑡3 𝑡2 𝑡 1

−1 3 −3 1
3 −6 3 0
−3 0 3 0
1 4 1 0

𝑃𝑖−1
𝑃𝑖
𝑃𝑖+1
𝑃𝑖+2

B-spline Curves (to be covered later)

• Other splines:

– Catmull-Rom

– Cardinal splines

– Tensioned splines

−𝑎 2 − 𝑎 𝑎 − 2 𝑎
2𝑎 𝑎 − 3 3 − 2𝑎 −𝑎
−𝑎 0 𝑎 0
0 1 0 0

1

6

−𝑎 12 − 9𝑎 9𝑎 − 12 𝑎
2𝑎 𝑎 − 3 18 − 15𝑎 −𝑎
−3𝑎 0 3𝑎 0
0 6 − 2𝑎 𝑎 0

𝑓𝑖 𝑡 = 𝑡3 𝑡2 𝑡 1
1

2

−1 3 −3 1
2 −5 4 −1
−1 0 1 0
0 1 0 0

𝑃𝑖−1
𝑃𝑖
𝑃𝑖+1
𝑃𝑖+2

Differential Geometry of Curves

陈仁杰

renjiec@ustc.edu.cn

http://staff.ustc.edu.cn/~renjiec

Computer Aided Geometric Design
Fall Semester 2024

mailto:renjiec@ustc.edu.cn
http://staff.ustc.edu.cn/~renjiec

Parametric Curves

• Parametric Curves:
• Think of a curve 𝑐 as the path of a moving particle

• Not always enough to know where a particle went – we also want to
know when it got there → 𝑐 𝑡

• Parameter 𝑡 is often thought of as time

Parametric Curves

• Parametric Curves:
• A parameterization of class 𝐶𝑘 𝑘 ≥ 1 of a curve in ℝ𝑛 is a smooth map
𝑐: 𝐼 = 𝑎, 𝑏 ⊂ ℝ ↦ ℝ𝑛, where 𝑐 is of class 𝐶𝑘

Parametric Curves

• Parametric Curves:
• The image set 𝑐 𝐼 is called the trace of the curve

• Different parameterizations can have the same trace.

• A point in the trace, which corresponds to more than one parameter
value 𝑡, is called self-intersection of the curve

Parametric Curves: Examples

• The positive x-axis
• 𝑐 𝑡 = 𝑡, 0 , 𝑡 ∈ 0,∞

• 𝑐 𝑡 = 𝑒𝑡 , 0 , 𝑡 ∈ ℝ

• Circle
• 𝑐 𝑡 = cos 𝑡 , sin 𝑡 , 𝑡 ∈ 0,2𝜋

• 𝑐 𝑡 = cos 2𝑡 , sin 2𝑡 , 𝑡 ∈ 0, 𝜋

• 𝑐 𝑡 = cos 𝑡 , sin 𝑡 , 𝑡 ∈ ℝ

The velocity vector

• The derivative 𝑐′ 𝑡 is called the velocity vector to the curve 𝑐 at
time 𝑡
• 𝑐′ 𝑡 gives the direction of the movement

• 𝑐′ 𝑡 gives the speed

• Example
• 𝛼 𝑡 = cos 𝑡 , sin 𝑡 , 𝑡 ∈ 0, 2𝜋

• 𝛽 𝑡 = cos 2𝑡 , sin 2𝑡 , 𝑡 ∈ 0, 𝜋

Regular parametric curves

• Regular parametrization
• A parameterization is called regular if 𝑐′ 𝑡 ≠ 0 for all 𝑡

• A point at which a curve is regular is called an ordinary point

• A point at which a curve is non-regular is called an singular point

Examples: regularity

• Examples: issues with non-regular parameterization

Examples: cusps

Singularities can be desired design features

Examples: cusps

Singularities can be desired design features

Cusp

Change of parameterization

• Given a smooth regular parametrization, an allowable change
of parameter is any real smooth (differentiable) function

𝑓: 𝐼1 → 𝐼 such that 𝑓′ ≠ 0 on 𝐼1
• It is orientation preserving when 𝑓′ > 0

Change of parameterization

• Parameter Transformations:
• We can regard a regular curve as a collection of regular

parameterizations, any two of which are reparameterizations of each
other (equivalence class)

• We are interested in properties that are invariant under parameter
transformations

Geometric observations

• Tangent vector:
• The tangent line to a regular curve 𝑐 𝑡 at 𝑝0 = 𝑐 𝑡0 can be defined

as points 𝑝 which satisfy 𝑝 − 𝑝0 ∥ 𝑐0
′ , where 𝑐0

′ = 𝑐′ 𝑡0

• The normalized vector 𝑡 =
𝑐′

𝑐′
 is called the tangent vector

Geometric observations

• The normal plane:
• The normal plane can be obtained as points 𝑝 whose coordinates satisfy
𝑝 − 𝑝0 ⊥ 𝑐0

′

⇔ 𝑝− 𝑝0 ⋅ 𝑐0
′ = 0

Geometric observations

• Osculating plane: 密切平面

• Assume the curve 𝑐 𝑡 is not a straight line. Any three arbitrary non-
collinear points 𝑝1, 𝑝2, 𝑝3 determine a plane

• If 𝑝1, 𝑝2, 𝑝3 tend to the same points 𝑝0 of 𝑐, then their plane converges to
a plane called the osculating plane 𝑇 of 𝑐 at 𝑝0

• The osculating plane is well defined if the first two derivatives 𝑐0
′ and 𝑐0

′′
at 𝑝0 are linearly independent and is give as:

𝑐0
′ × 𝑐0

′′ ⋅ 𝑝 − 𝑝0 = 0

Geometric observations

Observe the distance between 𝑃 𝑡0 + Δ𝑡 and a given
plane passing through 𝑃 𝑡0 with normal vector 𝑎

𝑎 ⋅ 𝑃 𝑡0 + Δ𝑡 − 𝑃 𝑡0 = 𝑎 ⋅ ሶ𝑃 𝑡0 Δ𝑡 +
ሷ𝑃 𝑡0
2!

Δ𝑡2 +⋯

The distance is minimal when

𝑎 ⋅ ሶ𝑃 𝑡0 = 0, 𝑎 ⋅ ሷ𝑃 𝑡0 = 0

That is when the plane is osculating

→ The osculating plane is the plane that best fits the curve at 𝑃 𝑡0

Geometric observations

• The rectifying plane: 从切平面

• The plane normal to both, the osculating plane and the normal plane, is
called the rectifying plane 𝑅 and can be obtained as points 𝑝 whose
coordinates satisfy

𝑐0
′ × 𝑐0

′ × 𝑐0
′′ ⋅ 𝑝 − 𝑝0 = 0

Geometric observations

Normals: any vector in the normal plane is normal to
the curve, in particular:

• The normal 𝑛 lying in the osculating plane is called the
principal normal at 𝑝0.

It has a direction 𝑐0
′ × 𝑐0

′′ × 𝑐0
′

• The normal 𝑏 lying in the rectifying plane is called the
binormal. 副法向

It has a direction 𝑐0
′ × 𝑐0

′′

The Frenet frame

We can define a local coordinates system on the curve by
three vectors

• The tangent 𝑡 =
𝑐′

𝑐0
′

• The binormal 𝑏 =
𝑐0
′×𝑐0

′′

𝑐0
′×𝑐0

′′

• The principal normal 𝑛 = 𝑏 × 𝑡

The Frenet frame and associated planes

• The tangent 𝑡 =
𝑐′

𝑐0
′

• the normal plane 𝑝 − 𝑝0 ⋅ 𝑡 = 0

• The binormal 𝑏 =
𝑐0
′×𝑐0

′′

𝑐0
′×𝑐0

′′

• the osculating plane 𝑝 − 𝑝0 ⋅ 𝑏 = 0

• The principal normal 𝑛 = 𝑏 × 𝑡
• the rectifying plane 𝑝 − 𝑝0 ⋅ 𝑛 = 0

Curvature

• Common conceptions of curvature
• Measures bending of a curve

• A straight line does not bend → 0 curvature

• A circle has constant bending → constant curvature

Curvature

Euler’s heuristic approach for planar curves
• Variation of the tangent angle: how much does the curve differ from a

straight line

Curvature for regular parameterization

The curvature is denoted by 𝜅 and defined as

𝜅 𝑡 =
𝑐′ 𝑡 × 𝑐′′ 𝑡

𝑐′ 𝑡 3

Examples:

• Consider the circle 𝑐 𝑡 = 𝑟 cos 𝑡 , 𝑟 sin 𝑡 , 0

The curvature is given by

• Consider the helix 𝑐 𝑡 = 𝑟 cos 𝑡 , 𝑟 sin 𝑡 , 𝑎𝑡 , the curvature is

𝜅 𝑡 =
𝑟

𝑟2 + 𝑎2

𝜅 𝑡 =
−𝑟 sin 𝑡, 𝑟 cos 𝑡, 0 × −𝑟 cos 𝑡, −𝑟 sin 𝑡, 0

𝑟3
=

0, 0, 𝑟2

𝑟3
=

1

𝑟

Special case: planar curves

• For a regular planar curve 𝑐 𝑡 = 𝑥 𝑡 , 𝑦 𝑡

𝜅 𝑡 =
𝑥′𝑦′′ − 𝑥′′𝑦′

𝑥′2 + 𝑦′2
3
2

• Sometimes we talk about signed curvature, and then curvature
can be allowed to be signed (negative, zero, or positive)

𝜅 𝑡 =
𝑥′𝑦′′ − 𝑥′′𝑦′

𝑥′2 + 𝑦′2
3
2

𝜅 𝑡 =
𝑐′ 𝑡 × 𝑐′′ 𝑡

𝑐′ 𝑡 3

Examples

Curvature of circles

• Curvature of a circle is constant, 𝜅 ≡
1

𝑟
 (𝑟 = radius)

• Accordingly: define radius of curvature as
1

𝜅

Curvature in practice

Most of commercial package allow inspecting the quality of the
curvature

Curvature in practice

Most commercial package allow checking the quality of the
curvature even meticulously!

Curvature and Road Construction

曲率图：

曲
率

Τ
1
𝑟

直线

弧长

弧形

Clothoide, Euler Spiral 羊角螺线

𝑐 𝑡 =

න
0

𝑡

cos
𝜋

2
𝑢2 𝑑𝑢

න
0

𝑡

sin
𝜋

2
𝑢2 𝑑𝑢

曲率图：

曲
率

Τ
1
𝑟

直线

弧长

弧形

Torsion for regular parameterization

Definition
• The torsion 𝜏 measures the variation of the binormal vector

• (deviation of the curve from its projection on the osculating plane, can be
regarded as how far is the curve is from being a planar curve) and is
given by

𝜏 𝑡 =
𝑐′ × 𝑐′′ ⋅ 𝑐′′′

𝑐′ × 𝑐′′ 2

Torsion

Examples:

• Torsion for a planar curve

• Torsion for a quadratic curve

Measuring lengths on curves

The arc length of a curve
• Can be regarded as the limit of the sum of infinitesimal segments along

the curve

𝑐 𝑡 𝑐 𝑡 + Δ𝑡

Measuring lengths on curves

The arc length of a curve
• The arc length of a regular curve 𝐶 is defined as :

lengthc = න
𝑎

𝑏

𝑐′ 𝑑𝑡

• Independent of the parameterization (to prove this, use integration by
substitution)

Measuring lengths on curves

Curve arc length matters in practice (e.g., cable routing
problems)

Arc-length parametrized curves

Arc length parametrization

• Consider the portion of 𝑐 𝑡 spanned from 0 to 𝑡, the length 𝑠 of this
arc is a function of 𝑡:

𝑠 𝑡 = න
0

𝑡

𝑐′ 𝑢 𝑑𝑡

• Since
𝑑𝑠

𝑑𝑡
= 𝑐′ 𝑢 > 0 (why?) → 𝑠 can be introduced as a new

parameterization

Arc length parametrization

• Consider the portion of 𝑐 𝑡 spanned from 0 to 𝑡, the length 𝑠 of this
arc is a function of 𝑡:

𝑠 𝑡 = න
0

𝑡

𝑐′ 𝑢 𝑑𝑡

• Since
𝑑𝑠

𝑑𝑡
= 𝑐′ 𝑢 > 0 (why?) → 𝑠 can be introduced as a new

parameterization

• We have 𝑐′ 𝑠 =
𝑑𝑐

𝑑𝑠
=

ൗ𝑑𝑐
𝑑𝑡

ൗ𝑑𝑠
𝑑𝑡
⇒ 𝑐′ 𝑠 =1

• 𝑐 𝑠 is called an arc-length (or unit-speed) parametrized curve, the
parameter 𝑠 is called the arc length of 𝑐 or the natural parameter

Reparameterization by arc length

• Arc-length (or unit-speed) parameterization:

• Any regular curve admits an arc-length parameterization

• This does not mean that the arc-length parameterization can be
computed

Examples

• Find an arc-length parameterization for the Helix:
cos 𝑡
sin 𝑡
𝑡

𝑠 𝑡 = න
0

𝑡

𝑐′ 𝑢 𝑑𝑡

Examples

• Find an arc-length parameterization for the Helix:
cos 𝑡
sin 𝑡
𝑡

𝑠 𝑡 = න
0

𝑡

−sin 𝑢 2 + cos 𝑢 2 + 12𝑑𝑢 = 𝑡 2 ⇒ 𝑡 =
𝑠

2

The arc-length parameterized Helix:

cos
𝑠

2

sin
𝑠

2
𝑠

2

𝑠 𝑡 = න
0

𝑡

𝑐′ 𝑢 𝑑𝑡

Examples

• How about the ellipse 𝛼 𝑡 =
2 cos 𝑡
sin 𝑡
0

?

𝑠 𝑡 = න
0

𝑡

𝑐′ 𝑢 𝑑𝑡

Examples

• How about the ellipse 𝛼 𝑡 =
2 cos 𝑡
sin 𝑡
0

?

𝑠 𝑡 = න
0

𝑡

4 − sin 𝑢 2 + cos 𝑢 2𝑑𝑢 = න
0

𝑡

4 − 3 cos2 𝑢 𝑑𝑢

Does not admit any closed form antiderivative

𝑠 𝑡 = න
0

𝑡

𝑐′ 𝑢 𝑑𝑡

Examples

• How about 𝛼 𝑡 =

𝑡
𝑡2

2

0

?

𝑠 𝑡 = න
0

𝑡

𝑐′ 𝑢 𝑑𝑡

Examples

• How about 𝛼 𝑡 =

𝑡
𝑡2

2

0

?

𝑠 𝑡 = න
0

𝑡

1 + 𝑢2𝑑𝑢 = 𝑡 1 + 𝑡2 + ln 𝑡 + 1 + 𝑡2

• No straightforward way to write 𝑡 as a function of s!

𝑠 𝑡 = න
0

𝑡

𝑐′ 𝑢 𝑑𝑡

Geometric consequences of Arc length
parameterization
• Since 𝑐′ 𝑢 = 1

Geometric consequences of Arc length
parameterization
• Since 𝑐′ 𝑢 = 1, by noting that 𝑐′ ⋅ 𝑐′ = 1 and taking the

derivative, we have 𝑐′ ⋅ 𝑐′′ = 0

• 𝑐′′ is perpendicular to 𝑐′ (both lives on the osculating plane)

• Therefore 𝑐′′ is a direction vector of the principal normal
(provided that 𝑐′′ ≠ 0)

⇒ 𝑛 =
𝑐′′

𝑐′′

Curvature again

• The curvature of an arc-length parametrized curve (unit speed
curve) 𝑐 𝑡 simplifies to

𝜅 = 𝑐′′ 𝑢

𝜅 𝑡 =
𝑐′ 𝑡 × 𝑐′′ 𝑡

𝑐′ 𝑡 3

Further mathematical formulations:
Frenet Curves

Frenet Curves

• Frenet curves
• A Frenet curve is an arc-length parametrized curve 𝑐 in ℝ𝑛 such that
𝑐′ 𝑠 , 𝑐′′ 𝑠 , … , 𝑐𝑛−1 𝑠 are linearly independent

Frenet Curves

• Frenet curves
• A Frenet curve is an arc-length parametrized curve 𝑐 in ℝ𝑛 such that
𝑐′ 𝑠 , 𝑐′′ 𝑠 , … , 𝑐𝑛−1 𝑠 are linearly independent

• Frenet frame
• Every Frenet curve has a unique Frenet frame 𝑒1 𝑠 , 𝑒2 𝑠 , … , 𝑒𝑛 𝑠 that

satisfies
• 𝑒1 𝑠 , 𝑒2 𝑠 , … , 𝑒𝑛 𝑠 is orthonormal and positively oriented

Frenet Curves

• Frenet curves
• A Frenet curve is an arc-length parametrized curve 𝑐 in ℝ𝑛 such that
𝑐′ 𝑠 , 𝑐′′ 𝑠 , … , 𝑐𝑛−1 𝑠 are linearly independent

• Frenet frame
• Every Frenet curve has a unique Frenet frame 𝑒1 𝑠 , 𝑒2 𝑠 , … , 𝑒𝑛 𝑠 that

satisfies
• 𝑒1 𝑠 , 𝑒2 𝑠 , … , 𝑒𝑛 𝑠 is orthonormal and positively oriented

• Apply the Gram-Schmidt process to 𝑐′, 𝑐′′, … , 𝑐𝑛

Gram-Schmidt Process:
Construction of Orthonormal Bases
• Input: Linear independent set 𝑣1, 𝑣2, … , 𝑣𝑛

• Output: Orthogonal set 𝑏1, 𝑏2, … , 𝑏𝑛
• Set 𝑏1 =

𝑣1

𝑣1

• For 𝑘 = 2,… , 𝑛

• ෪𝑏𝑘 = 𝑣𝑘 − σ𝑖=1
𝑘−1 𝑣𝑘 , 𝑏𝑖 𝑏𝑖

• 𝑏𝑘 =
෪𝑏𝑘
෪𝑏𝑘

Planar Curves

The Frenet Frame of an arc-length parametrized planar curve

𝑒1 𝑠 = 𝑐′ 𝑠 𝑒2 𝑠 = 𝑅90∘𝑒1 𝑠

Frame equation

𝑒1 𝑠

𝑒2 𝑠

′

=
0 𝜅 𝑠

−𝜅 𝑠 0

𝑒1 𝑠

𝑒2 𝑠

Signed Curvature

𝜅 𝑠 = 𝑒1
′ 𝑠 , 𝑒2 𝑠 is called the signed curvature of the curve

Tangent vector Normal vector

𝜅 𝑡 =
𝑐′ 𝑡 × 𝑐′′ 𝑡

𝑐′ 𝑡 3

Osculating circle

Osculating circle
• Radius: Τ1 𝜅

• Center: 𝑐 𝑠 +
1

𝜅
𝑒2 𝑠

Properties

• Rigid motions
• Rigid motion: 𝑥 → 𝐴𝑥 + 𝑏 with orthogonal 𝐴 (in other words: affine maps that

preserve distances)
• Orientation preserving (no mirroring) if det 𝐴 = +1

• Mirroring leads to det 𝐴 = −1

• Invariance under rigid motions for planar curves
• Curvature is invariant under rigid motion

• Absolute value is invariant

• Signed value is invariant for orientation preserving rigid motion

• Rigidity of planar curves
• Two Frenet curves with identical signed curvature function differ only by an

orientation preserving rigid motion

Fundamental Theorem

Fundamental theorem for planar curves
• Let 𝜅: 𝑎, 𝑏 ↦ ℝ be a smooth function. For some 𝑠0 ∈ 𝑎, 𝑏 , suppose we

are given a point 𝑝0 and two orthonormal vectors 𝑡0 and 𝑛0. Then there
exists a unique Frenet curve 𝑐: 𝑎, 𝑏 ↦ ℝ2 such that
• 𝑐 𝑠0 = 𝑝0
• 𝑒1 𝑠0 = 𝑡0
• 𝑒2 𝑠0 = 𝑛0
• The curvature of 𝑐 equals the given function 𝜅

• In other words: for every smooth function there is a unique (up to rigid
motion) curve that has this function as its curvature

Arc-length Derivative

• Arc-length parameterization
• Finding an arc-length parameterization for a parameterized curve is

usually difficult

• Still one can compute the Frenet frame and its derivatives. For this we
define the so called arc-length derivative

• Arc-length derivative
• For a parameterized curve 𝑐: 𝑎, 𝑏 ↦ ℝ𝑛, we define the arc-length

derivative of any differentiable function 𝑓: 𝑎, 𝑏 ↦ ℝ as

𝑓′ 𝑡 =
1

𝑐′ 𝑡
𝑓′ 𝑡

Compute the signed curvature

• Computing the Frenet frame
• For 𝑐: 𝑎, 𝑏 ↦ ℝ2, the Frenet frame at 𝑐 𝑡 can be computed as (using arc

length derivative)

𝑒1 𝑡 = 𝑐′ 𝑡 =
𝑐′ 𝑡

𝑐′ 𝑡
𝑒2 𝑡 = 𝑅90

∘
𝑒1 𝑡

• Computing the signed curvature
• The signed curvature is given by

𝜅 𝑡 = 𝑒1
′ 𝑡 , 𝑒2 𝑡 =

𝑐′′ 𝑡 , 𝑅90
∘
𝑐′ 𝑡

𝑐′ 𝑡 3

Space Curves

• Frenet frame of arc-length parametrized space curves
• Frenet frame of a Frenet curve in ℝ3

• Tangent vector
𝑒1 𝑠 = 𝑐′ 𝑠

• Normal vector

𝑒2 𝑠 =
1

𝑐′′ 𝑡
𝑐′′ 𝑡

• Binormal vector
𝑒3 𝑠 = 𝑒1 𝑠 × 𝑒2 𝑠

Frenet Frame of Space Curves

• Frenet–Serret equations

𝑒1 𝑠

𝑒2 𝑠

𝑒3 𝑠

′

=
0 𝜅 𝑠 0

−𝜅 𝑠 0 𝜏 𝑠
0 −𝜏 𝑠 0

𝑒1 𝑠

𝑒2 𝑠

𝑒3 𝑠

• The signed curvature still is 𝜅 𝑠 = 𝑒1
′ 𝑠 , 𝑒2 𝑠

Frenet Frame of Space Curves

• Frenet–Serret equations

𝑒1 𝑠

𝑒2 𝑠

𝑒3 𝑠

′

=
0 𝜅 𝑠 0

−𝜅 𝑠 0 𝜏 𝑠
0 −𝜏 𝑠 0

𝑒1 𝑠

𝑒2 𝑠

𝑒3 𝑠

• The torsion 𝜏 𝑠 = 𝑒2
′ 𝑠 , 𝑒3 𝑠 measures how the

curve bends out of the plane spanned by 𝑒1 and 𝑒2

𝜏 𝑡 =
𝑐′ × 𝑐′′ ⋅ 𝑐′′′

𝑐′ × 𝑐′′ 2

Frenet Frame of Space Curves

• Frenet equations for curves in ℝ𝑛

𝑒1 𝑠

𝑒2 𝑠
…

𝑒𝑛 𝑠

′

=

0 𝜅1 𝑠 0 … 0

−𝜅1 𝑠 0 𝜅2 𝑠 … 0

0 −𝜅2 𝑠 0 …

… 𝜅𝑛−1 𝑠

0 … −𝜅𝑛−1 𝑠 0

𝑒1 𝑠

𝑒2 𝑠
…

𝑒𝑛 𝑠

• The function 𝜅𝑖 𝑠 are called the 𝑖𝑡ℎ Frenet curvatures

Summary of relations

• For regular curves:

• The tangent 𝑡 =
𝑐′

𝑐′
, the normal plane 𝑝 − 𝑝0 ⋅ 𝑡 = 0

• The binormal 𝑏 =
𝑐′×𝑐′′

𝑐′×𝑐′′
, the osculating plane 𝑝 − 𝑝0 ⋅ 𝑏 = 0

• The principal normal 𝑛 = 𝑏 × 𝑡, the rectifying plane 𝑝 − 𝑝0 ⋅ 𝑛 = 0

• The curvature 𝜅 𝑡 =
𝑐′×𝑐′′

𝑐′ 3

• The torsion 𝜏 𝑡 =
𝑐′×𝑐′′ ⋅𝑐′′′

𝑐′×𝑐′′ 2

Summary of relations

For an arc-length parameterized (unit speed) curves 𝑐 𝑠 :

• The tangent 𝑡 = 𝑐′

• The binormal 𝑏 = 𝑡 × 𝑛

• The principal normal 𝑛 =
𝑡′

𝑡′
=

𝑐′′

𝑐′′
,

• The curvature 𝜅 𝑡 = 𝑡′ = 𝑐′′

• The signed curvature 𝜅 𝑠 = 𝑡′ = 𝑐′′

• The torsion 𝜏 𝑡 = −𝑏′ ⋅ 𝑛

Special case: planar curves

• For a regular planar curve 𝑐 𝑡 = 𝑥 𝑡 , 𝑦 𝑡 , it is defined as

𝜅 𝑡 =
𝑥′𝑦′′ − 𝑥′′𝑦′

𝑥′2 + 𝑦′2
3
2

• Sometimes we talk about signed curvature, and then curvature
can be allowed to be signed (negative, zero, or positive)

𝜅 𝑡 =
𝑥′𝑦′′ − 𝑥′′𝑦′

𝑥′2 + 𝑦′2
3
2

Bézier Splines

陈仁杰

renjiec@ustc.edu.cn

http://staff.ustc.edu.cn/~renjiec

Computer Aided Geometric Design
Fall Semester 2024

mailto:renjiec@ustc.edu.cn
http://staff.ustc.edu.cn/~renjiec

Recap

de Casteljau algorithm

Bernstein form

Recap

• bézier curves and curve design:
• The rough form is specified by the position of the control points

• Results: smooth curve approximating the control points

• Computation / Representation
• de Casteljau algorithm

• Bernstein form

Recap

• Bézier curves and curve design:
• The rough form is specified by the position of the control points

• Results: smooth curve approximating the control points

• Computation / Representation
• de Casteljau algorithm

• Bernstein form

• Problems:
• High polynomial degree

• Moving a control point can change the whole curve

• Interpolation of points

• →Bézier splines

Recap

Approximation Interpolation

Towards Bézier Splines

• Interpolation problems:
• given:

𝒌0, … , 𝒌𝑛 ∈ ℝ3 control points

𝑡0, … , 𝑡𝑛 ∈ ℝ knot sequence

𝑡𝑖 < 𝑡𝑖+1, for 𝑖 = 0,… , 𝑛 − 1

• wanted
• Interpolating curve 𝒙 𝑖 , i.e. 𝒙 𝑡𝑖 = 𝒌𝑖 for 𝑖 = 0, … , 𝑛

• Approach: “Joining” of 𝑛 Bézier curves with certain intersection conditions

Towards Bézier Splines

• The following issues arise when stitching together Bézier
curves:

• Continuity

• Parameterization

• Degree

Bézier Splines
Parametric and Geometric Continuity

Parametric Continuity

Joining curves – continuity
• Given: 2 curves

𝒙1 𝑡 over 𝑡0, 𝑡1
𝒙2 𝑡 over 𝑡1, 𝑡2

• 𝒙1 and 𝒙2 are 𝐶𝑟 continuous at 𝑡1, if all their 0th to 𝑟th derivative vectors
coincides at 𝑡1

Parametric Continuity

• 𝐶0: position varies continuously

• 𝐶1: First derivative is continuous across junction
• In other words: the velocity vector remains the same

• 𝐶2: Second derivative is continuous across junction
• The acceleration vector remains the same

Parametric Continuity

Continuity

Parametric Continuity 𝑪𝒓:

• 𝐶0, 𝐶1, 𝐶2 … continuity

• Does a particle moving on this
curve have a smooth trajectory
(position, velocity,
acceleration, …)?

• Depends on parameterization

• Useful for animation (object
movement, camera paths)

Geometric Continuity 𝑮𝒓:

• Is the curve itself smooth?

• Independent of
parameterization

• More relevant for modeling
(curve design)

Geometric continuity:

Geometric continuity of curves
• Given: 2 curves

𝒙1 𝑡 over 𝑡0, 𝑡1
𝒙2 𝑡 over 𝑡1, 𝑡2

• 𝒙1 and 𝒙2 are 𝐺𝑟 continuous in 𝑡1, if they can be reparameterized in such
a way that they are 𝐶𝑟 continuous in 𝑡1

Geometric continuity:

• 𝐺0 = 𝐶0: position varies continuously (connected)

• 𝐺1: tangent direction varies continuously (same tangent)
• In other words: the normalized tangent varies continuously

• Equivalently: The curve can be reparameterzed so that it becomes 𝐶1

• Also equivalent: A unit speed parameterization would be 𝐶1

• 𝐺2: curvature varies continuously (same tangent and curvature)
• Equivalently: The curve can be reparameterized so that it becomes 𝐶2

• Also equivalent: A unit speed parameterization would be 𝐶2

𝜅 = 𝑐′′

Bézier Splines
Parameterization

Bézier spline curves

Local and global parameters:
• Given:

• 𝑏0,…,𝑏𝑛
• 𝑦 𝑢 : Bézier curve in interval 0,1
• 𝑥 𝑡 : Bézier curve in interval 𝑡𝑖 , 𝑡𝑖+1

• Setting 𝑢 𝑡 =
𝑡−𝑡𝑖

𝑡𝑖+1−𝑡𝑖

• Results in 𝑥 𝑡 = 𝑦 𝑢 𝑡

The local parameter 𝑢 runs from 0 to 1,
while the global parameter 𝑡 runs from 𝑡𝑖 to 𝑡𝑖+1

Bézier spline curves

Derivatives:

𝑥′ 𝑡 =

𝑥′′ 𝑡 =

…

𝑥 𝑛 𝑡 =

𝑢 𝑡 =
𝑡 − 𝑡𝑖

𝑡𝑖+1 − 𝑡𝑖

𝑥 𝑡 = 𝑦 𝑢 𝑡

𝑦′ 𝑢 𝑡 ⋅ 𝑢′ 𝑡 =
𝑦′ 𝑢 𝑡

𝑡𝑖+1−𝑡𝑖

𝑦′′ 𝑢 𝑡 ⋅ 𝑢′ 𝑡
2
+ 𝑦′ 𝑢 𝑡 ⋅ 𝑢′′ 𝑡 =

𝑦′′ 𝑢 𝑡

𝑡𝑖+1 − 𝑡𝑖
2

𝑦 𝑛 𝑢 𝑡

𝑡𝑖+1−𝑡𝑖
𝑛

Bézier Curve

𝒇 𝑡 = σ𝑖=0
𝑛 𝐵𝑖

𝑛 𝑡 𝒑𝑖

• Function value at 0,1 :
𝒇 0 = 𝒑0
𝒇 1 = 𝒑1

• First derivative vector at 0,1
𝒇′ 0 = 𝑛 𝒑1 − 𝒑0
𝒇′ 1 = 𝑛 𝒑𝑛 − 𝒑𝑛−1

• Second derivative vector at 0,1
𝒇′′ 0 = 𝑛 𝑛 − 1 𝒑2 − 𝟐𝒑1 + 𝒑0

𝒇′′ 1 = 𝑛 𝑛 − 1 𝒑𝑛 − 2𝒑𝑛−1 + 𝒑𝑛−2

Bézier spline curves

Special cases:

𝒙′ 𝑡𝑖 =
𝑛⋅ 𝒑1−𝒑0

𝑡𝑖+1−𝑡𝑖

𝒙′ 𝑡𝑖+1 =
𝑛⋅ 𝒑𝑛−𝒑𝑛−1

𝑡𝑖+1−𝑡𝑖

𝒙′′ 𝑡𝑖 =
𝑛⋅ 𝑛−1 ⋅ 𝒑2−2𝒑1+𝒑0

𝑡𝑖+1−𝑡𝑖
2

𝒙′′ 𝑡𝑖+1 =
𝑛⋅ 𝑛−1 ⋅ 𝒑𝑛−2𝒑𝑛−1+𝒑𝑛−2

𝑡𝑖+1−𝑡𝑖
2

Bézier Splines
General Case

Bézier spline curves

Joining Bézier curves:
• Given: 2 Bézier curves of degree 𝑛 through

𝒌𝑗−1 = 𝒃0
−, 𝒃1

−, … , 𝒃𝑛
− = 𝒌𝑗

𝒌𝑗 = 𝒃0
+, 𝒃1

+, … , 𝒃𝑛
+ = 𝒌𝑗+1

Bézier spline curves

• Required: 𝐶1-continuity at 𝒌𝑗:

• 𝒃𝑛−1
− , 𝒌𝑗 , 𝒃1

+ collinear and

𝒃𝑛
− − 𝒃𝑛−1

−

𝑡𝑗 − 𝑡𝑗−1
=
𝒃1
+ − 𝒃0

+

𝑡𝑗+1 − 𝑡𝑗

Δ𝑗−1 Δ𝑗

𝒃𝑛
− = 𝒃0

+
𝒃𝑛−1
− 𝒃1

+

𝒙′ 𝑡𝑖 =
𝑛 ⋅ 𝒃1 − 𝒃0
𝑡𝑖+1 − 𝑡𝑖

Bézier spline curves

• Required: 𝐺1-continuity at 𝒌𝑗:

• 𝒃𝑛−1
− , 𝒌𝑗 , 𝒃1

+ collinear

• Less restrictive than 𝐶1-continuity

Bézier Splines
Choosing the degree

Choosing the Degree

Candidates:
• 𝑑 = 0 (piecewise constant) : not smooth

• 𝑑 = 1 (piecewise linear) : not smooth enough

• 𝑑 = 2 (piecewise quadratic) : constant 2nd derivative,
still too inflexible

• 𝑑 = 3 (piecewise cubic): degree of choice for
computer graphics applications

Cubic Splines

Cubic piecewise polynomials:
• We can attain 𝐶2 continuity without fixing the second derivative

throughout the curve

Cubic Splines

Cubic piecewise polynomials:
• We can attain 𝐶2 continuity without fixing the second derivative

throughout the curve

• 𝐶2 continuity is perceptually important

• Motion: continuous position, velocity & acceleration

Discontinuous acceleration noticeable (object/camera motion)

• We can see second order shading discontinuities

(esp.: reflective objects)

Cubic Splines

Cubic piecewise polynomials
• We can attain 𝐶2 continuity without fixing the second derivative throughout the

curve

• 𝐶2 continuity is perceptually important
• We can see second order shading discontinuities

(esp.: reflective objects)

• Motion: continuous position, velocity & acceleration
Discontinuous acceleration noticeable (object/camera motion)

• One more argument for cubics:
• Among all 𝐶2 curves that interpolate a set of points (and obey to the same end

condition), a piecewise cubic curve has the least integral acceleration (“smoothest curve
you can get”).

Bézier Splines

Local control: Bézier splines
• Concatenate several curve segments

• Question: Which constraints to place upon the control points in order to
get 𝐶−1, 𝐶0, 𝐶1, 𝐶2 continuity?

Bézier Spline Continuity

Rules for Bézier spline continuity:
• 𝐶0 continuity:

• Each spline segment interpolates the first and last control point

• Therefore: Points of neighboring segments have to coincide for 𝐶0 continuity

Bézier Spline Continuity

Rules for Bézier spline continuity:
• Additional requirement for 𝐶1 continuity:

• Tangent vectors are proportional to differences 𝒑1 − 𝒑0, 𝒑𝑛 − 𝒑𝑛−1

• Therefore: These vectors must be identical for 𝐶1 continuity

Bézier Spline Continuity

Rules for Bézier spline continuity
• Additional requirement for 𝐶2 continuity:

• Τ𝑑2 𝑑𝑡2 vectors are prop. to 𝒑2 − 2𝒑1 + 𝒑0, 𝒑𝑛 − 2𝒑𝑛−1 + 𝒑𝑛−2
• Tangents must be the same (𝐶2 implies 𝐶1)

Continuity

Continuity for Bézier Splines

This means

This Bézier curve is 𝐺1: It can be reparameterized to become 𝐶1.
(Just increase the speed for the second segment by ratio of tangent
vector lengths)

In Practice

• Everyone is using cubic Bézier curves

• Higher degree are rarely used (some CAD/CAM applications)

• Typically: “points & handles” interface

• Four modes:
• Discontinuous (two curves)
• 𝐶0 Continuous (points meet)
• 𝐺1 continuous: Tangent direction continuous

• Handles point into the same direction, but different length

• 𝐶1 continuous
• Handle points have symmetric vectors

• 𝐶2 is more restrictive: control via 𝑘𝑖

Bézier spline curves

• Required: 𝐶2-continuity at 𝒌𝑗

• 𝐶1 implies
𝒃𝑛
−−𝒃𝑛−1

−

𝑡𝑗−𝑡𝑗−1
=

𝒃1
+−𝒃0

+

𝑡𝑗+1−𝑡𝑗

• 𝐶2 implies
𝒃𝑛
−−2𝒃𝑛−1

− +𝒃𝑛−2
−

𝑡𝑗−𝑡𝑗−1
2 =

𝒃2
+−2𝒃1

++𝒃0
+

𝑡𝑗+1−𝑡𝑗
2

Bézier spline curves

• Required: 𝐶2-continuity at 𝒌𝑗:

• Introduce 𝒅− = 𝒃𝑛−1
− +

Δ𝑗

Δ𝑗−1
𝒃𝑛−1
− − 𝒃𝑛−2

−

and 𝒅+ = 𝒃1
+ −

Δ𝑗−1

Δ𝑗
𝒃2
+ − 𝒃1

+

• By manipulating equation from the previous slides

• 𝐶2-continuity ⇔ 𝐶1-continuity and 𝒅− = 𝒅+

𝑡𝑗+1 − 𝑡𝑗
𝑡𝑗 − 𝑡𝑗−1

=
Δ𝑗
Δ𝑗−1

𝒃𝑛
− − 2𝒃𝑛−1

− + 𝒃𝑛−2
−

𝑡𝑗 − 𝑡𝑗−1
2 =

𝒃2
+ − 2𝒃1

+ + 𝒃0
+

𝑡𝑗+1 − 𝑡𝑗
2

Bézier spline curves

𝐶2-continuity ⇔ 𝐶1-continuity and 𝒅− = 𝒅+

𝒅− = 𝒃𝑛−1
− +

Δ𝑗

Δ𝑗−1
𝒃𝑛−1
− − 𝒃𝑛−2

−

𝒅+ = 𝒃1
+ −

Δ𝑗−1

Δ𝑗
𝒃2
+ − 𝒃1

+

Bézier spline curves

• 𝐺2-continuity in general (for all types of curves):

• Given:
• 𝒙1 𝑡 , 𝒙2 𝑡 with

• 𝒙1 𝑡𝑖 = 𝒙2 𝑡𝑖 = 𝒙 𝑡𝑖
• 𝒙1

′ 𝑡𝑖 = 𝒙2
′ 𝑡𝑖 = 𝒙 𝑡𝑖

• Then the requirement for 𝐺2-continuity at 𝑡 = 𝑡𝑖:

𝒙2
′′ 𝑡𝑖 − 𝒙1

′′ 𝑡𝑖 ∥ 𝒙′ 𝑡𝑖

Parallel

Bézier spline curves

• Required: 𝐺2-continuity at 𝑘𝑗:

• 𝐺1-continuity

• Co-planarity for : 𝒃𝑛−2
− , 𝒃𝑛−1

− , 𝒌𝑗, 𝒃1
+, 𝒃2

+

• And:
area 𝒃𝑛−2

− ,𝒃𝑛−1
− ,𝒌𝑗

area 𝒌𝑗,𝒃1
+,𝒃2

+ =
𝑎3

𝑏3

Bézier Splines
𝐶2 Cubic Bézier Splines

Cubic Bézier Splines

Cubic Bézier spline curves
• Given:

𝒌0, … , 𝒌𝑛 ∈ ℝ3 control points

𝑡0, … , 𝑡𝑛 ∈ ℝ knot sequence

𝑡𝑖 < 𝑡𝑖+1, for 𝑖 = 0,… . , 𝑛1

• Wanted: Bézier points 𝒃0, … , 𝒃3𝑛 for an interpolating 𝐶2-continuous
piecewise cubic Bézier spline curve

Cubic Bézier Splines

Examples: 𝑛 = 3:

Cubic Bézier Splines

• 3𝑛 + 1 unknown points

• 𝑏3𝑖 = 𝑘𝑖 for 𝑖 = 0,… , 𝑛

𝑛 + 1 equations

• 𝐶1 in points 𝑘𝑖 for 𝑖 = 1, … , 𝑛 − 1

𝑛 − 1 equations

• 𝐶2 in points 𝑘𝑖 for 𝑖 = 1,… , 𝑛 − 1

𝑛 − 1 equations

3𝑛 − 1 equations

⇒ 2 additional conditions necessary: end conditions

Bézier Splines
𝐶2 Cubic Bézier Splines: End conditions

Bézier spline curves: End conditions

Bessel’s end condition
• The tangential vector in 𝒌0 is equivalent to the tangential vector of the

parabola interpolating 𝒌0, 𝒌1, 𝒌2 at 𝒌0:

Bézier spline curves: End conditions

Parabola Interpolating {𝒌0, 𝒌1, 𝒌2}

𝒑 𝑡 =
𝑡2 − 𝑡 𝑡1 − 𝑡

𝑡2 − 𝑡0 𝑡1 − 𝑡0
𝒌0 +

𝑡2 − 𝑡 𝑡 − 𝑡0
𝑡2 − 𝑡1 𝑡1 − 𝑡0

𝒌1 +
𝑡0 − 𝑡 𝑡1 − 𝑡

𝑡2 − 𝑡1 𝑡2 − 𝑡0
𝒌2

Its derivative

𝒑′ 𝑡0 = −
𝑡2 − 𝑡0 + 𝑡1 − 𝑡0
𝑡2 − 𝑡0 𝑡1 − 𝑡0

𝒌0 +
𝑡2 − 𝑡0

𝑡2 − 𝑡1 𝑡1 − 𝑡0
𝒌1 −

𝑡1 − 𝑡0
𝑡2 − 𝑡1 𝑡2 − 𝑡0

𝒌2

Location of 𝒃1

𝒃1 = 𝒃0 +
𝑡1 − 𝑡0

3
𝒑′ 𝑡0

ሶ𝒙 𝑡𝑖 =
𝑛⋅ 𝒃1−𝒃0

𝑡𝑖+1−𝑡𝑖

Bézier spline curves: End conditions

• Natural end condition:

𝒙′′ 𝑡0 = 0 ⇔ 𝒃1 =
𝒃2 + 𝒃0

2

𝒙′′ 𝑡𝑛 = 0 ⇔ 𝒃3𝑛−1 =
𝒃3𝑛−2 + 𝒃3𝑛

2

ሷ𝒙 𝑡𝑖 =
𝑛 ⋅ 𝑛 − 1 ⋅ 𝒃2 − 2𝒃1 + 𝒃0

𝑡𝑖+1 − 𝑡𝑖
2

End conditions: Examples

• Bessel end condition

Curve: circle of radius 1 Curvature plot

End conditions: Examples

• Natural end condition

Curve: circle of radius 1 Curvature plot

Bézier Splines
𝐶2 Cubic Bézier Splines: parameterization

Bézier spline curves: Parameterization

Approach so far:
• Given: control points 𝒌0, … , 𝒌𝑛 and knot sequence 𝑡0 < ⋯ < 𝑡𝑛

• Wanted: interpolating curve

• Problem: Normally, the knot sequence is not given, but it influences the
curve

Bézier spline curves: Parameterization

• Equidistant (uniform) parameterization
• 𝑡𝑖+1 − 𝑡𝑖 = const

• e.g. 𝑡𝑖 = 𝑖

• Geometry of the data points is not considered

• Chordal parameterization
• 𝑡𝑖+1 − 𝑡𝑖 = 𝒌𝑖+1 − 𝒌𝑖
• Parameter intervals proportional to the distances of neighbored control

points

Bézier spline curves: Parameterization

• Centripetal parameterization

• 𝑡𝑖+1 − 𝑡𝑖 = 𝒌𝑖+1 − 𝒌𝑖

• Foley parameterization
• Involvement of angles in the control polygon

• 𝑡𝑖+1 − 𝑡𝑖 = 𝒌𝑖+1 − 𝒌𝑖 ⋅ 1 +
3

2

ෝ𝛼𝑖 𝒌𝑖−𝒌𝑖−1

𝒌𝑖−𝒌𝑖−1 + 𝒌𝑖+1−𝒌𝑖
+

3

2

ෝ𝛼𝑖+1 𝒌𝑖+1−𝒌𝑖

𝒌𝑖+1−𝒌𝑖 + 𝒌𝑖+2−𝒌𝑖+1

• with ො𝛼𝑖 = min 𝜋 − 𝛼𝑖 ,
𝜋

2

• and 𝛼𝑖 = angle 𝒌𝑖−1, 𝒌𝑖 , 𝒌𝑖+1

• Affine invariant parameterization
• Parameterization on the basis of an affine invariant distance measure (e.g. G. Nielson)

Bézier spline curves: Parameterization

• Examples: Chordal parameterization

Curve Curvature plot

Bézier spline curves: Parameterization

• Examples: Centripetal parameterization

Curve Curvature plot

Bézier spline curves: Parameterization

• Examples: Foley parameterization

Curve Curvature plot

Bézier spline curves: Parameterization

• Examples: Uniform parameterization

Curve Curvature plot

Bézier Splines
𝐶2 Cubic Bézier Splines: closed curves

Closed cubic Bézier spline curves

Closed cubic Bézier spline curves
• Given:

𝒌0, … , 𝒌𝑛−1, 𝒌𝑛 = 𝒌0: control points

𝑡0 < ⋯ < 𝑡𝑛: knot sequence

• As an “end condition” for the piecewise cubic curve we place:

𝒙′ 𝑡0 = 𝒙′ 𝑡𝑛

𝒙′′ 𝑡0 = 𝒙′′ 𝑡𝑛

Closed cubic Bézier spline curves

Closed cubic Bézier spline curves
• → 𝐶2-continuous and closed curve

• Advantage of closed curves: selection of the end condition is not
necessary!

• Examples (on the next 3 slides): 𝑛 = 3

Examples

Examples

Examples

B-Splines

陈仁杰
renjiec@ustc.edu.cn

http://staff.ustc.edu.cn/~renjiec

Computer Aided Geometric Design
Fall Semester 2024

mailto:renjiec@ustc.edu.cn
http://staff.ustc.edu.cn/~renjiec

Mathematical view: spline functions

Graphics view: spline curves (created using spline functions)

B-Splines

Basis

Bézier

Motivation

• Back to the algebraic approach for Bézier curves

→Bernstein polynomials

• Problem: global influence of the Bézier points

• Introduction of new basis function

→B-spline functions

Some history

• Early use of splines on computers for data interpolation
• Ferguson at Boeing, 1963

• Gordon and de Boor at General Motors

• B-splines, de Boor 1972

• Free form curve design
• Gordon and Riesenfeld, 1974 → B-splines as a generalization of Bézier

curves

Repeated linear interpolation

Another way to increase smoothness:

Repeated linear interpolation

• Another way to increase smoothness:

Repeated linear interpolation

• Another way to increase smoothness

De Boor Recursion: uniform case

• The uniform B-spline basis of order 𝒌 (degree 𝒌 − 𝟏) is given as

• 𝑁𝑖
1 𝑡 = ቊ

1, if 𝑖 ≤ 𝑡 < 𝑖 + 1
0, otherwise

• 𝑁𝑖
𝑘 𝑡 =

𝑡−𝑖

𝑖+𝑘−1 −𝑖
𝑁𝑖
𝑘−1 𝑡 +

𝑖+𝑘 −𝑡

𝑖+𝑘 − 𝑖+1
𝑁𝑖+1
𝑘−1 𝑡

• =
𝑡−𝑖

𝑘−1
𝑁𝑖
𝑘−1 𝑡 +

𝑖+𝑘−𝑡

𝑘−1
𝑁𝑖+1
𝑘−1 𝑡

N.B.: we will use 𝑁𝑖
𝑘 or 𝑁𝑖,𝑘 interchangeably

B-spline curves: general case

• Given: knot sequence 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑛 < ⋯ < 𝑡𝑛+𝑘

(𝑡0, 𝑡1, … , 𝑡𝑛+𝑘 is called knot vector)

• Normalized B-spline functions 𝑁𝑖,𝑘 of the order 𝑘 (degree 𝑘 − 1) are defined as:

𝑁𝑖,1 𝑡 = ቊ
1, 𝑡𝑖 ≤ 𝑡 < 𝑡𝑖+1
0, otherwise

𝑁𝑖,𝑘 𝑡 =
𝑡−𝑡𝑖

𝑡𝑖+𝑘−1−𝑡𝑖
𝑁𝑖,𝑘−1 𝑡 +

𝑡𝑖+𝑘−𝑡

𝑡𝑖+𝑘−𝑡𝑖+1
𝑁𝑖+1,𝑘−1 𝑡

for 𝑘 > 1 and 𝑖 = 0, … , 𝑛

• Remark:
• If a knot value is repeated 𝑘 times, the denominator may vanish
• In this case: The fraction is treated as a zero

Example

𝑁𝑖,1 𝑡 = ቊ
1, 𝑡𝑖 ≤ 𝑡 < 𝑡𝑖+1
0, otherwise

𝑁𝑖,𝑘 𝑡 =
𝑡−𝑡𝑖

𝑡𝑖+𝑘−1−𝑡𝑖
𝑁𝑖,𝑘−1 𝑡 +

𝑡𝑖+𝑘−𝑡

𝑡𝑖+𝑘−𝑡𝑖+1
𝑁𝑖+1,𝑘−1 𝑡

for 𝑘 > 1 and 𝑖 = 0,… , 𝑛

Example

Example

Key Ideas

• We design one basis function 𝑏 𝑡

• Properties:
• 𝑏 𝑡 is 𝐶2 continuous
• 𝑏 𝑡 is piecewise polynomial, degree 3 (cubic)
• 𝑏 𝑡 has local support
• Overlaying shifted 𝑏 𝑡 + 𝑖 forms a partition of unity
• 𝑏 𝑡 ≥ 0 for all 𝑡

• In short:
• All desirable properties build into the basis
• Linear combinations will inherit these

Shifted Basis Functions

Shifted basis function 𝑏 𝑡

Illustration only

Basis properties

• For the so defined basis functions, the following properties
can be shown:
• 𝑁𝑖,𝑘 𝑡 > 0 for 𝑡𝑖 < 𝑡 < 𝑡𝑖+𝑘

• 𝑁𝑖,𝑘 𝑡 = 0 for 𝑡0 < 𝑡 < 𝑡𝑖 or 𝑡𝑖+𝑘 < 𝑡 < 𝑡𝑛+𝑘

• σ𝑖=0
𝑛 𝑁𝑖,𝑘 𝑡 = 1 for 𝑡𝑘−1 ≤ 𝑡 ≤ 𝑡𝑛+1

• For 𝑡𝑖 ≤ 𝑡𝑗 ≤ 𝑡𝑖+𝑘, the basis functions 𝑁𝑖,𝑘 𝑡 are 𝐶𝑘−2 at the
knots 𝑡𝑗

• The interval 𝑡𝑖 , 𝑡𝑖+𝑘 is called support of 𝑁𝑖,𝑘

B-spline curves

• Given: 𝑛 + 1 control points 𝒅0, … , 𝒅𝑛 ∈ ℝ3

knot vector 𝑇 = 𝑡0, … , 𝑡𝑛, … 𝑡𝑛+𝑘

• Then, the B-spline curve 𝒙 𝑡 of the order 𝑘 is defined as

𝒙 𝑡 =෍

𝑖=0

𝑛

𝑁𝑖,𝑘 𝑡 ⋅ 𝒅𝑖

• The points 𝒅𝑖 are called de Boor points

Carl R. de Boor
German-American mathematician
University of Wisconsin-Madison

Example

• 𝑘 = 4, 𝑛 = 5

Support intervals of 𝑁𝑖,𝑘

Curve defined in interval 𝑡3 ≤ 𝑡 ≤ 𝑡6

B-spline curves

Multiple weighted knot vectors
• So far: 𝑇 = 𝑡0, … , 𝑡𝑛, … , 𝑡𝑛+𝑘 with 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑛+𝑘

• Now: also multiple knots allowed, i.e. with 𝑡0 ≤ 𝑡1 ≤ ⋯ ≤ 𝑡𝑛+𝑘

• The recursive definition of the B spline function 𝑁𝑖,𝑘 𝑖 = 0,… , 𝑛 works
nonetheless, as long as no more than 𝑘 knots coincide

B-spline curves

Effect of multiple knots:
• set: 𝑡0 = 𝑡1 = ⋯ = 𝑡𝑘−1
• and 𝑡𝑛+1 = 𝑡𝑛+2 = ⋯ = 𝑡𝑛+𝑘

𝒅0 and 𝒅𝑛 are interpolated

B-spline curves

• Example: 𝑘 = 4, 𝑛 = 5

B-spline curves

• Example: 𝑘 = 4, 𝑛 = 5

B-spline curves

• Further example

B-spline curves

Interesting property:
• B-spline functions 𝑁𝑖,𝑘 (𝑖 = 0,… , 𝑘 − 1) of the order 𝑘 over the knot

vector 𝑇 = 𝑡0, 𝑡1, … , 𝑡2𝑘−1 = 0,… , 0,1,… , 1

are Bernstein polynomials 𝐵𝑖
𝑘−1 of degree 𝑘 − 1

𝑘 times 𝑘 times

B-spline curves properties

• Given:
• 𝑇 = 𝑡0, … , 𝑡0, 𝑡𝑘 , … , 𝑡𝑛, 𝑡𝑛+1, … , 𝑡𝑛+1

• de Boor polygon 𝒅0, … , 𝒅𝑛

• Then, the following applies for the related B-spline curve 𝒙 𝑡 :

𝒌 times 𝒌 times

B-spline curves properties

• 𝒙 𝑡0 = 𝒅0, 𝒙 𝑡𝑛+1 = 𝒅𝑛 (end point interpolation)

• 𝒙′ 𝑡0 =
𝑘−1

𝑡𝑘−𝑡0
𝒅1 − 𝒅0 (tangent direction at 𝒅0, similar in 𝒅𝑛)

• 𝒙 𝑡 consists of 𝑛 − 𝑘 + 2 polynomial curve segments of degree
𝑘 − 1 (assuming no multiple inner knots)

B-spline curves properties

• Multiple inner knots ⇒ reduction of continuity of 𝑥 𝑡 .

𝑙-times inner knot (1 ≤ 𝑙 < 𝑘) means

𝐶𝑘−𝑙−1-continuity

• Local impact of the de Boor points: moving of 𝑑𝑖 only changes
the curve in the region 𝑡𝑖 , 𝑡𝑖+𝑘

• The insertion of new de Boor points does not change the
polynomial degree of the curve segments

B-spline curves properties

Locality of B-spline curves

B-spline curves

Evaluation of B-spline curves
• Using B-spline functions

• Using the de Boor algorithm

Similar algorithm to the de Casteljau algorithm for Bézier curves;

consists of a number of linear interpolations on the de Boor polygon

The de Boor algorithm

• Given:

𝒅0, … , 𝒅𝑛: de Boor points

𝑡0, … , 𝑡𝑘−1 = 𝑡0, 𝑡𝑘 , 𝑡𝑘+1, … , 𝑡𝑛, 𝑡𝑛+1, … , 𝑡𝑛+𝑘 = 𝑡𝑛+1 :

Knot vector

• wanted:

Curve point 𝒙 𝑡 of the B-spline curve of the order 𝑘

The de Boor algorithm

1. Search index 𝑟 with 𝑡𝑟 ≤ 𝑡 < 𝑡𝑟+1

2. for 𝑖 = 𝑟 − 𝑘 + 1,… , 𝑟

• 𝑑𝑖
0 = 𝑑𝑖

• for 𝑗 = 1,… , 𝑘 − 1

• for 𝑖 = 𝑟 − 𝑘 + 1 + 𝑗, … , 𝑟

• 𝑑𝑖
𝑗
= 1 − 𝛼𝑖

𝑗
⋅ 𝑑𝑖−1

𝑗−1
+ 𝛼𝑖

𝑗
⋅ 𝑑𝑖

𝑗−1

• with 𝛼𝑖
𝑗
=

𝑡−𝑡𝑖

𝑡𝑖+𝑘−𝑗−𝑡𝑖

• Then: 𝑑𝑟
𝑘−1 = 𝑥 𝑡

B-spline curves

• The intermediate coefficients 𝑑𝑖
𝑗
𝑡 can be placed into a triangular

shaped matrix of points – the de Boor scheme:

• 𝑑𝑟−𝑘+1 = 𝑑𝑟−𝑘+1
0

• 𝑑𝑟−𝑘+2 = 𝑑𝑟−𝑘+2
0 𝑑𝑟−𝑘+2

1

• …

• 𝑑𝑟−1 = 𝑑𝑟−1
0 𝑑𝑟−1

1 … 𝑑𝑟−1
𝑘−2

• 𝑑𝑟 = 𝑑𝑟
0 𝑑𝑟

1 … 𝑑𝑟
𝑘−2 𝑑𝑟

𝑘−1 = 𝑥 𝑡

B-spline curves: interpolation

Interpolating B-spline curves
• Given: 𝑛 + 1 control points 𝒌0,…,𝒌𝑛

knot sequence 𝑠0,…,𝑠𝑛
• Wanted: piecewise cubic interpolating B-spline curve 𝒙

i.e., 𝒙 𝑠𝑖 = 𝒌𝑖 for 𝑖 = 0,… , 𝑛

• Approach: piecewise cubic ⇒ 𝑘 = 4
• 𝒙 𝑡 consists of 𝑛 segments ⇒ 𝑛 + 3 de Boor points

B-spline curves: interpolation

• Example: 𝑛 = 3

B-spline curves: interpolation

• We choose the knot vector
• 𝑇 = 𝑡0, 𝑡1, 𝑡2, 𝑡3, 𝑡4, … , 𝑡𝑛+2, 𝑡𝑛+3, 𝑡𝑛+4, 𝑡𝑛+5, 𝑡𝑛+6

= 𝑠0, 𝑠0, 𝑠0, 𝑠0, 𝑠1, … , 𝑠𝑛−1, 𝑠𝑛, 𝑠𝑛, 𝑠𝑛, 𝑠𝑛

• Then, the following conditions arise:
𝒙 𝑠0 = 𝒌0 = 𝒅0
𝒙 𝑠𝑖 = 𝒌𝑖 = 𝑁𝑖,4 𝑠𝑖 𝒅𝑖 +𝑁𝑖+1,4 𝑠𝑖 𝒅𝑖+1+𝑁𝑖+2,4 𝑠𝑖 𝒅𝑖+2

for 𝑖 = 1,… , 𝑛 − 1
𝒙 𝑠𝑛 = 𝒌𝑛 = 𝒅𝑛+2

• Total: 𝑛 + 1 conditions for 𝑛 + 3 unknown de Boor points

→ 2 end conditions

B-spline curves: interpolation

• Here as example: natural end conditions

𝑥′′ 𝑠0 = 0 ⇔
𝑑2 − 𝑑1
𝑠2 − 𝑠0

=
𝑑1 − 𝑑0
𝑠1 − 𝑠0

𝑥′′ 𝑠𝑛 = 0 ⇔
𝑑𝑛+2 − 𝑑𝑛+1
𝑠𝑛 − 𝑠𝑛−1

=
𝑑𝑛+1 − 𝑑𝑛
𝑠𝑛 − 𝑠𝑛−2

B-spline curves: interpolation

• This results in the following tridiagonal system of equations:

1
𝛼0 𝛽0 𝛾0

𝛼1 𝛽1 𝛾1
.

.
.

𝛼𝑛−1 𝛽𝑛−1 𝛾𝑛−1
𝛼𝑛 𝛽𝑛 𝛾𝑛

1

𝑑0
𝑑1
𝑑2
.
.
.
𝑑𝑛
𝑑𝑛+1
𝑑𝑛+2

=

𝑘0
0
𝑘1
.
.
.

𝑘𝑛−1
0
𝑘𝑛

B-spline curves: interpolation

• with • 𝛼0 = 𝑠2 − 𝑠0
• 𝛽0 = − 𝑠2 − 𝑠0 − 𝑠1 − 𝑠0
• 𝛾0 = 𝑠1 − 𝑠0

• 𝛼𝑛 = 𝑠𝑛 − 𝑠𝑛−1
• 𝛽𝑛 = − 𝑠𝑛 − 𝑠𝑛−1 − 𝑠𝑛 − 𝑠𝑛−2
• 𝛾𝑛 = 𝑠𝑛 − 𝑠𝑛−2

• 𝛼𝑖 = 𝑁𝑖,4 𝑠𝑖
• 𝛽𝑖 = 𝑁𝑖+1,4 𝑠𝑖
• 𝛾𝑖 = 𝑁𝑖+2,4 𝑠𝑖
• for 𝑖 = 1,… , 𝑛 − 1

Natural end conditions

B-spline curves: interpolation

• Solving a tridiagonal system of equations: Thomas-algorithm!

• O(n)

• Only for diagonally dominant matrices

𝑏1 𝑐1 0
𝑎2 𝑏2 𝑐2

𝑎3 𝑏3 .

. . 𝑐𝑛−1
0 𝑎𝑛 𝑏𝑛

𝑥1
𝑥2
.
.
𝑥𝑛

=

𝑑1
𝑑2
.
.
𝑑𝑛

B-spline curves: interpolation

• Solving a tridiagonal system of equation: Thomas-algorithm!

Forward elimination phase
for 𝑘 = 2: 𝑛

𝑚 =
𝑎𝑘
𝑏𝑘−1

𝑏𝑘 = 𝑏𝑘 −𝑚𝑐𝑘−1
𝑑𝑘 = 𝑑𝑘 −𝑚𝑑𝑘−1

end

Backward substitution phase

𝑥𝑛 =
𝑑𝑛

𝑏𝑛

for 𝑘 = 𝑛 − 1:−1: 1

𝑥𝑘 =
𝑑𝑘 − 𝑐𝑘𝑥𝑘+1

𝑏𝑘
end

Bézier splines to B-splines

Conversion between cubic Bézier and B-spline curves
• Given:

𝒌0, … , 𝒌𝑛: control points

𝑡0,…,𝑡𝑛: knot sequence

2 end conditions

𝑏0,…,𝑏3𝑛: Bézier points for 𝐶2-continuous interpolating cubic Bézier spline curve

• Wanted: same curve in B-spline form

Bézier splines to B-splines

• Knot vector 𝑇 = 𝑡0, 𝑡0, 𝑡0, 𝑡0, 𝑡1, … , 𝑡𝑛−1, 𝑡𝑛, 𝑡𝑛, 𝑡𝑛, 𝑡𝑛
• 𝒅0, … , 𝒅𝑛+2 are determined by

• 𝑑0 = 𝑏0
• 𝑑1 = 𝑏1

• 𝑑𝑖 = 𝑏3𝑖−4 +
Δ𝑖−1

Δ𝑖−2
𝑏3𝑖−4 − 𝑏3𝑖−5 for 𝑖 = 2,… , 𝑛

• 𝑑𝑛+1 = 𝑏3𝑛−1
• 𝑑𝑛+2 = 𝑏3𝑛

where Δ𝑖 = 𝑡𝑖+1 − 𝑡𝑖 for 𝑖 = 0,… , 𝑛 − 1

• The inverse problem is solvable as well

Remember the condition on 𝒅− and
𝒅+ for 𝑪𝟐 continuity of Bézier splines

Bézier splines to B-splines

• Examples: 𝑛 = 4

Bézier splines to B-splines

Bézier splines to B-splines

Summary of Bézier and B-spline curves

1. Bézier curve for 𝑛 + 1 control points 𝑏0, …, 𝑏𝑛:
• Polynomial curve of degree 𝑛

• Uniquely defined by control points

• End point interpolation, remaining points are approximated

• Pseudo-local impact of control points

Summary of Bézier and B-spline curves

2. Interpolating cubic Bézier-spline curves by control points 𝑘0,…,𝑘𝑛
• Consists of 𝑛 piecewise cubic curve segments

• 𝐶2-continuous at the control points

• Uniquely defined by parameterization (i.e. knot sequence) and two end
conditions

• Interpolates all control points

• Pseudo-local impact of the control points

Summary of Bézier and B-spline curves

3. Piecewise cubic B-spline curve for control points 𝑑0, … , 𝑑𝑛 and
knot vector 𝑇 = 𝑡0, 𝑡0, 𝑡0, 𝑡0, 𝑡1, … , 𝑡𝑛−1, 𝑡𝑛, 𝑡𝑛, 𝑡𝑛, 𝑡𝑛
• Consists of 𝑛 − 2 piecewise cubic curve segments which are 𝐶2 at the

knots

• Uniquely defined by 𝑑𝑖 and 𝑇

• End point interpolation, the remaining points are approximated

• Local impact of the de Boor points

Summary of Bézier and B-spline curves

4. Interpolating cubic B-spline through the control points 𝑘0, … , 𝑘𝑛
• Possible to formulate like (3) using 2 end conditions and solution of a

tridiagonal system of equations for each 𝑥, 𝑦- and 𝑧- component

• Identical curve to (2)

B-splines
detailed examples

B-spline curves: general case (reminder)

• Given: knot sequence 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑛 < ⋯ < 𝑡𝑛+𝑘

(𝑡0, 𝑡1, … , 𝑡𝑛+𝑘 is called knot vector)

• Normalized B-spline functions 𝑁𝑖,𝑘 of the order 𝑘 (degree 𝑘 − 1) are defined as:

𝑁𝑖,1 𝑡 = ቊ
1, 𝑡𝑖 ≤ 𝑡 < 𝑡𝑖+1
0, otherwise

𝑁𝑖,𝑘 𝑡 =
𝑡−𝑡𝑖

𝑡𝑖+𝑘−1−𝑡𝑖
𝑁𝑖,𝑘−1 𝑡 +

𝑡𝑖+𝑘−𝑡

𝑡𝑖+𝑘−𝑡𝑖+1
𝑁𝑖+1,𝑘−1 𝑡

for 𝑘 > 1 and 𝑖 = 0,… , 𝑛

• Remark:
• If a knot value is repeated 𝑘 times, the denominator may vanish
• In this case: The fraction is treated as a zero

B-spline basis evaluation: ex. 1

• For order 4 and knot sequence
𝑇 = 𝑡0 𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 𝑡6 𝑡7 = 0 0 0 0 1 1 1 1

Evaluate the B-spline function 𝑁0,4 𝑡 , 𝑁1,4 𝑡 , 𝑁2,4 𝑡 , 𝑁3,4 𝑡

B-spline basis evaluation: ex. 1

• 𝑁0,1 𝑡 = 𝑁1,1 𝑡 = 𝑁2,1 𝑡 = 𝑁4,1 𝑡 = 𝑁5,1 𝑡 = 𝑁6,1 𝑡 = 0

• 𝑁3,1 𝑡 = 1 0 ≤ 𝑡 < 1

• 𝑁0,2 𝑡 =
𝑡−𝑡0

𝑡1−𝑡0
𝑁0,1 𝑡 +

𝑡2−𝑡

𝑡2−𝑡1
𝑁1,1 𝑡 = 0

• 𝑁1,2 𝑡 =
𝑡−𝑡1

𝑡2−𝑡1
𝑁1,1 𝑡 +

𝑡3−𝑡

𝑡3−𝑡2
𝑁2,1 𝑡 = 0

• 𝑁2,2 𝑡 =
𝑡−𝑡2

𝑡3−𝑡2
𝑁2,1 𝑡 +

𝑡4−𝑡

𝑡4−𝑡3
𝑁3,1 𝑡 = 1 − 𝑡 𝑁3,1 𝑡

• 𝑁3,2 𝑡 =
𝑡−𝑡3

𝑡4−𝑡3
𝑁3,1 𝑡 +

𝑡5−𝑡

𝑡5−𝑡4
𝑁4,1 𝑡 = 𝑡𝑁3,1 𝑡

• 𝑁4,2 𝑡 =
𝑡−𝑡4

𝑡5−𝑡4
𝑁4,1 𝑡 +

𝑡6−𝑡

𝑡6−𝑡5
𝑁5,1 𝑡 = 0

• 𝑁5,2 𝑡 =
𝑡−𝑡5

𝑡6−𝑡5
𝑁5,1 𝑡 +

𝑡7−𝑡

𝑡7−𝑡6
𝑁6,1 𝑡 = 0

B-spline basis evaluation: ex. 1

• 𝑁0,3 𝑡 =
𝑡−𝑡0

𝑡2−𝑡0
𝑁0,2 𝑡 +

𝑡3−𝑡

𝑡3−𝑡1
𝑁1,2 𝑡 = 0

• 𝑁1,3 𝑡 =
𝑡−𝑡1

𝑡3−𝑡1
𝑁1,2 𝑡 +

𝑡4−𝑡

𝑡4−𝑡2
𝑁2,2 𝑡 = 1 − 𝑡 2𝑁3,1 𝑡

• 𝑁2,3 𝑡 =
𝑡−𝑡2

𝑡4−𝑡2
𝑁2,2 𝑡 +

𝑡5−𝑡

𝑡5−𝑡3
𝑁3,2 𝑡 = 2𝑡 1 − 𝑡 𝑁3,1 𝑡

• 𝑁3,3 𝑡 =
𝑡−𝑡3

𝑡5−𝑡3
𝑁3,2 𝑡 +

𝑡6−𝑡

𝑡6−𝑡4
𝑁4,2 𝑡 = 𝑡2𝑁3,1 𝑡

• 𝑁4,3 𝑡 =
𝑡−𝑡4

𝑡6−𝑡4
𝑁4,2 𝑡 +

𝑡7−𝑡

𝑡7−𝑡5
𝑁5,2 𝑡 = 0

B-spline basis evaluation: ex. 1

• Finally • 𝑁0,4 𝑡 =
𝑡−𝑡0

𝑡3−𝑡0
𝑁0,3 𝑡 +

𝑡4−𝑡

𝑡4−𝑡1
𝑁1,3 𝑡 = 1 − 𝑡 3𝑁3,1 𝑡

• 𝑁1,4 𝑡 =
𝑡−𝑡1

𝑡4−𝑡1
𝑁1,3 𝑡 +

𝑡5−𝑡

𝑡5−𝑡2
𝑁2,3 𝑡 = 3 1 − 𝑡 2𝑡𝑁3,1 𝑡

• 𝑁2,4 𝑡 =
𝑡−𝑡2

𝑡5−𝑡2
𝑁2,3 𝑡 +

𝑡6−𝑡

𝑡6−𝑡3
𝑁3,3 𝑡 = 3 1 − 𝑡 𝑡2𝑁3,1 𝑡

• 𝑁3,4 𝑡 =
𝑡−𝑡3

𝑡6−𝑡3
𝑁3,3 𝑡 +

𝑡7−𝑡

𝑡7−𝑡4
𝑁4,3 𝑡 = 𝑡3𝑁3,1 𝑡

B-spline basis evaluation: ex. 1

• Finally

• We clearly get the Bernstein basis function as mentioned earlier

• 𝑁0,4 𝑡 =
𝑡−𝑡0

𝑡3−𝑡0
𝑁0,3 𝑡 +

𝑡4−𝑡

𝑡4−𝑡1
𝑁1,3 𝑡 = 1 − 𝑡 3𝑁3,1 𝑡

• 𝑁1,4 𝑡 =
𝑡−𝑡1

𝑡4−𝑡1
𝑁1,3 𝑡 +

𝑡5−𝑡

𝑡5−𝑡2
𝑁2,3 𝑡 = 3 1 − 𝑡 2𝑡𝑁3,1 𝑡

• 𝑁2,4 𝑡 =
𝑡−𝑡2

𝑡5−𝑡2
𝑁2,3 𝑡 +

𝑡6−𝑡

𝑡6−𝑡3
𝑁3,3 𝑡 = 3 1 − 𝑡 𝑡2𝑁3,1 𝑡

• 𝑁3,4 𝑡 =
𝑡−𝑡3

𝑡6−𝑡3
𝑁3,3 𝑡 +

𝑡7−𝑡

𝑡7−𝑡4
𝑁4,3 𝑡 = 𝑡3𝑁3,1 𝑡

B-spline basis evaluation: ex. 2

• For order 4 and not sequence

𝑇 = 𝑡0 𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 𝑡6 𝑡7 = −3 −2 −1 0 1 2 3 4

Evaluate the corresponding basis

B-spline basis evaluation: ex. 2

• 𝑁0,2 𝑡 = 𝑡 + 3 𝑁0,1 𝑡 + −1 − 𝑡 𝑁1,1 𝑡

• 𝑁1,2 𝑡 = 𝑡 + 2 𝑁1,1 𝑡 + −𝑡 𝑁2,1 𝑡

• 𝑁2,2 𝑡 = 𝑡 + 1 𝑁2,1 𝑡 + 1 − 𝑡 𝑁3,1 𝑡

• 𝑁3,2 𝑡 = 𝑡𝑁3,1 𝑡 + 2 − 𝑡 𝑁4,1 𝑡

• 𝑁4,2 𝑡 = 𝑡 − 1 𝑁4,1 𝑡 + 3 − 𝑡 𝑁5,1 𝑡

• 𝑁5,2 𝑡 = 𝑡 − 2 𝑁5,1 𝑡 + 4 − 𝑡 𝑁6,1 𝑡

B-spline basis evaluation: ex. 2

• 𝑁0,3 𝑡 =
1

2
𝑡 + 2 𝑁0,2 𝑡 +

1

2
0 − 𝑡 𝑁1,2 𝑡

• 𝑁1,3 𝑡 =
1

2
𝑡 + 1 𝑁1,2 𝑡 +

1

2
1 − 𝑡 𝑁2,2 𝑡

• 𝑁2,3 𝑡 =
1

2
𝑡 + 0 𝑁2,2 𝑡 +

1

2
2 − 𝑡 𝑁3,2 𝑡

• 𝑁3,3 𝑡 =
1

2
𝑡 − 1 𝑁3,2 𝑡 +

1

2
3 − 𝑡 𝑁4,2 𝑡

B-spline basis evaluation: ex. 2

• Finally

• 𝑁0,4 𝑡 =
1

3
𝑡 + 3 𝑁0,3 𝑡 +

1

3
1 − 𝑡 𝑁1,3 𝑡

• 𝑁1,4 𝑡 =
1

3
𝑡 + 2 𝑁1,3 𝑡 +

1

3
2 − 𝑡 𝑁2,3 𝑡

• 𝑁2,4 𝑡 =
1

3
𝑡 + 1 𝑁2,3 𝑡 +

1

3
3 − 𝑡 𝑁3,3 𝑡

• 𝑁3,4 𝑡 =
1

3
𝑡𝑁3,3 𝑡 +

1

3
4 − 𝑡 𝑁4,3 𝑡

B-spline basis evaluation: ex. 2

• Then substituting

𝑁0,4 𝑡 =
1

6
𝑡 + 3 3𝑁0,1 𝑡 + − 𝑡 + 1 3 +

2

3
𝑡3 −

1

6
𝑡 − 1 3 𝑁1,1 𝑡 +

2

3
𝑡3 −

1

𝑡
𝑡 − 1 3 𝑁2,1 𝑡 −

1

6
𝑡 − 1 3𝑁3,1 𝑡

𝑁1,4 𝑡 =
1

6
𝑡 + 2 3𝑁1,1 𝑡 + −𝑡3 +

2

3
𝑡 − 1 3 −

1

6
𝑡 − 2 3 𝑁2,1 𝑡 +

2

3
𝑡 − 1 3 −

1

𝑡
𝑡 − 2 3 𝑁3,1 𝑡 −

1

6
𝑡 − 2 3𝑁4,1 𝑡

𝑁2,4 𝑡 =
1

6
𝑡 + 1 3𝑁2,1 𝑡 + − 𝑡 − 1 3 +

2

3
𝑡 − 2 3 −

1

6
𝑡 − 3 3 𝑁3,1 𝑡 +

2

3
𝑡 − 2 3 −

1

𝑡
𝑡 − 3 3 𝑁4,1 𝑡 −

1

6
𝑡 − 3 3𝑁5,1 𝑡

𝑁3,4 𝑡 =
1

6
𝑡3𝑁3,1 𝑡 + − 𝑡 − 2 3 +

2

3
𝑡 − 3 3 −

1

6
𝑡 − 4 3 𝑁4,1 𝑡 +

2

3
𝑡 − 3 3 −

1

𝑡
𝑡 − 4 3 𝑁5,1 𝑡 −

1

6
𝑡 − 4 3𝑁6,1 𝑡

de Boor algorithm (reminder)

1. Search index 𝑟 with 𝑡𝑟 ≤ 𝑡 < 𝑡𝑟+1

2. for 𝑖 = 𝑟 − 𝑘 + 1,… , 𝑟

𝑑𝑖
0 = 𝑑𝑖 sometimes noted as 𝑑𝑖

0 𝑡 = 𝑑𝑖

• for 𝑗 = 1,… , 𝑘 − 1

for 𝑖 = 𝑟 − 𝑘 + 1 + 𝑗, … , 𝑟

• 𝑑𝑖
𝑗
= 1 − 𝛼𝑖

𝑗
⋅ 𝑑𝑖−1

𝑗−1
+ 𝛼𝑖

𝑗
⋅ 𝑑𝑖

𝑗−1

• with 𝛼𝑖
𝑗
=

𝑡−𝑡𝑖

𝑡𝑖+𝑘−𝑗−𝑡𝑖

• Then: 𝑑𝑟
𝑘−1 = 𝑥 𝑡

de Boor algorithm: ex. 1

• For order 4, de Boor points 𝑄0, 𝑄1, … , 𝑄8 and knot sequence
𝑇 = 𝑡0 𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 𝑡6 𝑡7 𝑡8 𝑡9 𝑡10 𝑡11 𝑡12

= 0 0 0 0 1 2 3 4 5 6 6 6 6

Evaluate the B-spline curve at 𝑡 = 4.75

Order 𝒌
𝒏 + 𝟏 points
𝒏 + 𝒌 + 𝟏 knots

de Boor algorithm: ex. 1

• Since 𝑡7 ≤ 4.75 < 𝑡8, 𝑟 = 7, therefore 𝑖 = 7 − 4 + 1 = 4

𝑄5
1
4.75 = 1 − 𝜆 𝑄4

0
4.75 + 𝜆𝑄5

0
4.75

𝑄6
1
4.75 = 1 − 𝜆 𝑄5

0
4.75 + 𝜆𝑄6

0
4.75

𝑄7
1
4.75 = 1 − 𝜆 𝑄6

0
4.75 + 𝜆𝑄7

0
4.75

𝜆 =
4.75 − 𝑡5
𝑡8 − 𝑡5

= 0.917

𝜆 =
4.75 − 𝑡6
𝑡9 − 𝑡6

= 0.583

𝜆 =
4.75 − 𝑡7
𝑡10 − 𝑡7

= 0.375

= 1 − 𝜆 𝑄4 + 𝜆𝑄5 = 0.083𝑄4 + 0.917𝑄5

= 1 − 𝜆 𝑄5 + 𝜆𝑄6 = 0.417𝑄5 + 0.583𝑄6

= 1 − 𝜆 𝑄6 + 𝜆𝑄7 = 0.625𝑄6 + 0.375𝑄7

de Boor algorithm: ex. 1

• Then

𝑄6
2
4.75 = 1 − 𝜆 𝑄5

1
4.75 + 𝜆𝑄6

1
4.75

𝑄7
1
4.75 = 1 − 𝜆 𝑄6

1
4.75 + 𝜆𝑄7

1
4.75

𝜆 =
4.75 − 𝑡6
𝑡8 − 𝑡6

= 0. 875

𝜆 =
4.75 − 𝑡7
𝑡9 − 𝑡7

= 0.375

= 0.125 0.083𝑄4 + 0.917𝑄5 + 0.875 0.417𝑄5 + 0.583𝑄6

= 0.01𝑄4 + 0.479𝑄5 + 0.510𝑄6

= 0.625 0.417𝑄5 + 0.583𝑄6 + 0.375 0.625𝑄6 + 0. 375𝑄7

= 0.261𝑄5 + 0.598𝑄6 + 0.141𝑄7

de Boor algorithm: ex. 1

• Then

𝑄7
3
4.75 = 1 − 𝜆 𝑄6

2
4.75 + 𝜆𝑄7

2
4.75

𝜆 =
4.75 − 𝑡7
𝑡8 − 𝑡7

= 0. 75
= 0. 25 0.01𝑄4 + 0.479𝑄5 + 0.510𝑄6

+ 0. 75 0.261𝑄5 + 0.598𝑄6 + 0.141𝑄7

= 0.0025𝑄4 + 0.316𝑄5 + 0.576𝑄6 + 0.106𝑄7

de Boor algorithm: ex. 2

• For order 4, de Boor points 𝑄0, 𝑄1, … , 𝑄6 and knot sequence
𝑇 = 𝑡0 𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 𝑡6 𝑡7 𝑡8 𝑡9 𝑡10

= −3 −2 −1 0 1 2 3 4 5 6 7

Evaluate the B-spline curve at 𝑡 = 3. 5

Order 𝒌
𝒏 + 𝟏 points
𝒏 + 𝒌 + 𝟏 knots

de Boor algorithm: ex. 1

• Since 𝑡6 ≤ 3. 5 < 𝑡7, 𝑟 = 7, therefore 𝑖 = 6 − 4 + 1 = 3

𝑄4
1
3.5 = 1 − 𝜆 𝑄3

0
+ 𝜆𝑄4

0

𝑄5
1
3.5 = 1 − 𝜆 𝑄4

0
+ 𝜆𝑄5

0

𝑄6
1
3.5 = 1 − 𝜆 𝑄5

0
+ 𝜆𝑄6

0

𝜆 =
3.5 − 𝑡4
4 − 1

= 0.833

𝜆 =
3.5 − 𝑡5
4 − 1

= 0.5

𝜆 =
3.5 − 𝑡6
4 − 1

= 0.167

= 0.167𝑄3 + 0.833𝑄4

= 0.5𝑄4 + 0.5𝑄5

= 0. 833𝑄5 + 0.167𝑄6

𝑄5
2
3.5 = 1 − 𝜆 𝑄4

1
+ 𝜆𝑄5

1

𝑄6
2
3.5 = 1 − 𝜆 𝑄5

1
+ 𝜆𝑄6

1

= 0.25 0.167𝑄3 + 0.833𝑄4 + 0.75 0.5𝑄4 + 0.5𝑄5

= 0.042𝑄3 + 0. 583𝑄4 + 0.375𝑄5

= 0.75 0.5𝑄4 + 0.5𝑄5 + 0.25 0.833𝑄5 + 0.167𝑄6

= 0.375𝑄4 + 0.583𝑄5 + 0. 042𝑄6

𝜆 =
3.5 − 𝑡5
4 − 2

= 0.75

𝜆 =
3.5 − 𝑡6
4 − 2

= 0.25

𝑄6
3
3.5 = 1 − 𝜆 𝑄5

2
+ 𝜆𝑄6

2

= 0. 5 0.042𝑄3 + 0. 583𝑄4 + 0.375𝑄5 + 0. 5 0.375𝑄4 + 0.583𝑄5 + 0. 042𝑄6
= 0.021𝑄3 + 0.479𝑄4 + 0.479𝑄5 + 0.021𝑄6

𝜆 =
3.5 − 𝑡6
4 − 3

= 0. 5

Blossoming and Polar Forms
Bézier Splines and B-Splines Revisited

陈仁杰
renjiec@ustc.edu.cn

http://staff.ustc.edu.cn/~renjiec

Computer Aided Geometric Design
Fall Semester 2024

mailto:renjiec@ustc.edu.cn
http://staff.ustc.edu.cn/~renjiec

A Short Step Back
Bézier & Monomials

Matrix Form

Matrix Notation: Bézier → Monomials

𝒇 𝑡 = 1 𝑡 𝑡2
1 0 0
−2 2 0
1 −2 1

𝒑0
𝒑1
𝒑2

(quadratic case)

𝒇 𝑡 = 1 𝑡 𝑡2 𝑡3

1 0 0 0
−3 3 0 0
3 −6 3 0
−1 3 −3 1

𝒑0
𝒑1
𝒑2
𝒑3

 (cubic case)

Format Conversion

Conversion: Compute Bézier coefficients from monomial coefficients

𝒄0
𝐵𝑒𝑧.

𝒄1
𝐵𝑒𝑧.

𝒄2
𝐵𝑒𝑧.

=
1 0 0
−2 2 0
1 −2 1

−1 𝒄0
𝒄1
𝒄2

(quadratic case)

𝒄0
𝐵𝑒𝑧.

𝒄1
𝐵𝑒𝑧.

𝒄2
𝐵𝑒𝑧.

𝒄3
𝐵𝑒𝑧.

=

1 0 0 0
−3 3 0 0
3 −6 3 0
−1 3 −3 1

−1 𝒄0
𝒄1
𝒄2
𝒄3

 (cubic case)

Format Conversion

Conversion: quadratic to cubic

𝒄0
3

𝒄1
3

𝒄2
3

𝒄3
3

=

1 0 0 0
−3 3 0 0
3 −6 3 0
−1 3 −3 1

−1
1 0 0 0
−2 2 0 0
1 −2 1 0
0 0 0 0

𝒄0
2

𝒄1
2

𝒄2
2

0

Convert to monomials and back to Bézier coefficients. (other degrees similar)

Example application: Output of TrueType fonts in Postscript.

Polar Forms & Blossoms
Idea & Definition

Affine Combinations

Definition (reminder):
• An affine combination of 𝑛 points ∈ ℝ𝑑 is given by:

𝑃𝛼 = σ𝑖=1
𝑛 𝛼𝑖𝑝𝑖 with σ𝑖=1

𝑛 𝛼𝑖 = 1

• A function 𝑓 is said to be affine in its parameter 𝑥𝑖 , if:

𝑓 𝑥1, … , σ𝑖=1
𝑛 𝛼𝑖𝑥𝑖

𝑘
, … , 𝑥𝑚 = σ𝑖=1

𝑛 𝛼𝑖𝑓 𝑥1, … , 𝑥𝑖
𝑘
, … , 𝑥𝑚 for σ𝑖=1

𝑛 𝛼𝑖 = 1

Affine Combinations

Examples:
• Linear (affine) interpolation of 2 points:

𝒑𝛼 = 𝛼𝒑1 + 1 − 𝛼 𝒑2

Affine Combinations

Examples:

• Barycentric combinations of 3 points

(“barycentric coordinates”)

𝑝 = 𝛼𝒑1 + 𝛽𝒑2 + 𝛾𝒑3, with 𝛼 + 𝛽 + 𝛾 = 1

Properties:

𝛾 = 1 − 𝛼 − 𝛽

𝛼 =
Δ 𝑝2,𝑝3,𝑝

Δ 𝑝1,𝑝2,𝑝3
, 𝛽 =

Δ 𝑝1,𝑝3,𝑝

Δ 𝑝1,𝑝2,𝑝3
, 𝛾 =

Δ 𝑝1,𝑝2,𝑝

Δ 𝑝1,𝑝2,𝑝3

Transformation to barycentric coordinates is a linear map

(heights in triangles)

Formalizing the Idea

• Idea: Express (piecewise) polynomial curves as iterated linear
(affine) interpolations

• First steps:
• A polynomials: 𝑃 𝑡 = 𝑎𝑡3 + 𝑏𝑡2 + 𝑐𝑡 + 𝑑

• Can be written as: 𝑃 𝑡 = 𝑎 ⋅ 𝑡 ⋅ 𝑡 ⋅ 𝑡 + 𝑏 ⋅ 𝑡 ⋅ 𝑡 + 𝑐 ⋅ 𝑡 + 𝑑

• Interpret each variable 𝑡 as a separate parameter:

𝑝 𝑡1, 𝑡2, 𝑡3 = 𝑎 ⋅ 𝑡1 ⋅ 𝑡2 ⋅ 𝑡3 + 𝑏 ⋅ 𝑡1 ⋅ 𝑡2 + 𝑐 ⋅ 𝑡1 + 𝑑

new function

Polar Forms

Solution: Polar Forms / Blossoms

A polar form or blossom 𝑓 of a polynomial 𝐹 of degree 𝑑 is a function in 𝑑 variables:

𝐹:ℝ → ℝ

𝑓:ℝ𝑑 → ℝ

with the following properties:
• Diagonality: 𝑓 𝑡, 𝑡, … , 𝑡 = 𝐹 𝑡

• Symmetry: 𝑓 𝑡1, 𝑡2, … , 𝑡𝑑 = 𝑓 𝑡𝜋 1 , 𝑡𝜋 2 , … 𝑡𝜋 𝑑
for all permutations of indices 𝜋

• Multi-affine: σ𝛼𝑘 = 1

⇒ 𝑓 𝑡1, 𝑡2, … , σ𝛼𝑘 𝑡𝑖
𝑘
, … , 𝑡𝑑

= 𝛼1𝑓 𝑡1, 𝑡2, … , 𝑡𝑖
1
, … , 𝑡𝑑 +⋯+ 𝛼𝑛𝑓 𝑡1, 𝑡2, … , 𝑡𝑖

𝑛
, … , 𝑡𝑑

Polar Forms

Rationale:

• Model polynomial as multi-affine function
• (multi-affine property)

• Plug in a common parameter to obtain the original polynomial
• (diagonal of the blossom)

• Symmetry property – makes the solution unique
• There is exactly one polar form for each polynomial

• This standardization makes different polars “compatible”,

we can compare them with each other

• We will see how this works in a few slides …

Properties

The mapping from polynomials to their corresponding polar forms
is one-to-one

• For each polar form 𝑓 𝑡1, 𝑡2, … , 𝑡𝑛 ,

a unique polynomials 𝐹 𝑡 exists

• For each polynomial 𝐹 𝑡 ,

a unique polar form 𝑓 𝑡1, 𝑡2, … , 𝑡𝑛 exists

Properties

Polar forms of monomials:
• Degree 0:

• Degree 1:

• Degree 2:

• Degree 3:

1 →?

Properties

Polar forms of monomials:
• Degree 0:

• Degree 1:

• Degree 2:

• Degree 3:

1 → 1

1 → 1, 𝑡 → 𝑡

1 → 1, 𝑡 →
𝑡1+𝑡2

2
, 𝑡2 → 𝑡1𝑡2

1 → 1, 𝑡2 →
𝑡1𝑡2+𝑡2𝑡3+𝑡1𝑡3

3

𝑡 →
𝑡1+𝑡2+𝑡3

3
, 𝑡3 → 𝑡1𝑡2𝑡3

Properties

Polar forms of monomials:
• Degree 0:

• Degree 1:

• Degree 2:

• Degree 3:

𝑓 = 𝑐0

𝑓 𝑡1 = 𝑐0 + 𝑐1𝑡1

𝑓 𝑡1, 𝑡2 = 𝑐0 + 𝑐1
𝑡1+𝑡2

2
+ 𝑐2𝑡1𝑡2

𝑓 𝑡1, 𝑡2, 𝑡3 = 𝑐0 + 𝑐1
𝑡1+𝑡2+𝑡3

3
+ 𝑐2

𝑡1𝑡2+𝑡2𝑡3+𝑡1𝑡3

3

+𝑐3𝑡1𝑡2𝑡3

Properties

General Case:

𝑓 𝑡1, … , 𝑡𝑛 =෍

𝑖=0

𝑛

𝑐𝑖
𝑛
𝑖

−1
෍

𝑆⊆ 1…𝑛 ,
𝑆 =𝑖

ෑ

𝑗∈𝑆

𝑡𝑗

• The 𝑐𝑖 are the monomial coefficients

• Idea: use all possible subsets of 𝑡𝑖 to make it symmetric

• This solution is unique

• Without the symmetry property, there would be a large number of
solutions

𝑆 denotes the cardinality of the set 𝑆

Generalizations

Blossoms for polynomials curves (points as output):
• Polar form of a polynomial curve of degree 𝑑:

𝐹: ℝ → ℝ𝑛

𝑓: ℝ𝑑 → ℝ𝑛

• Required Properties:
• Diagonality: 𝑓 𝑡, 𝑡, … , 𝑡 = 𝐹 𝑡

• Symmetry: 𝑓 𝑡1, 𝑡2, … , 𝑡𝑑 = 𝑓 𝑡𝜋 1 , 𝑡𝜋 2 , … , 𝑡𝜋 𝑑

for all permutations of indices 𝜋

• Multi-affine:: σ𝛼𝑘 = 1

⇒ 𝑓 𝑡1, 𝑡2, … ,෍𝛼𝑘 𝑡𝑖
𝑘
, … , 𝑡𝑑

= 𝛼1𝑓 𝑡1, 𝑡2, … , 𝑡𝑖
1
, … , 𝑡𝑑 +⋯+ 𝛼𝑛𝑓 𝑡1, 𝑡2, … , 𝑡𝑖

𝑛
, … , 𝑡𝑑

new

Generalizations

Blossoms with points as arguments:
• Polar form of degree 𝑑 with points as input and output:

𝐹: ℝ𝑚 → ℝ𝑛

𝑓: ℝ𝑑×𝑚 → ℝ𝑛

• Required Properties:
• Diagonality: 𝑓 𝒕, 𝒕, … , 𝒕 = 𝐹 𝒕

• Symmetry: 𝑓 𝒕1, 𝒕2, … , 𝒕𝑑 = 𝑓 𝒕𝜋 1 , 𝒕𝜋 2 , … , 𝒕𝜋 𝑑

for all permutations of indices 𝜋

• Multi-affine:: σ𝛼𝑘 = 1

⇒ 𝑓 𝒕1, 𝒕2, … ,෍𝛼𝑘 𝒕𝑖
𝑘
, … , 𝒕𝑑

= 𝛼1𝑓 𝒕1, 𝒕2, … , 𝒕𝑖
1
, … , 𝒕𝑑 +⋯+ 𝛼𝑛𝑓 𝒕1, 𝒕2, … , 𝒕𝑖

𝑛
, … , 𝒕𝑑

new

Generalizations

Vector arguments

• We will have to distinguish between points and vectors

(differences of points)

• Use “hat” notation ො𝑣 = 𝑝 − 𝑞 to denote vectors

• Also defined in the one dimensional case (vectors in ℝ)

• One vector: ෠1 = 1 − 0, ෡𝟏 = 1,…1 T − 𝟎

• Define shorthand notation (recursive) to define vectors in polar
form:

𝑓 𝑡1, … , 𝑡𝑛−𝑘 , ො𝑣1, … , ො𝑣𝑘 ≔ 𝑓 𝑡1, … , 𝑡𝑛−𝑘 , 𝑝1, ො𝑣2, … , ො𝑣𝑘 -𝑓 𝑡1, … , 𝑡𝑛−𝑘 , 𝑞1, ො𝑣2, … , ො𝑣𝑘

𝑛 − 𝑘 𝑘 𝑛 − 𝑘 𝑘 − 1 𝑛 − 𝑘 𝑘 − 1

Properties

Derivatives of blossoms:

𝑓 𝑡1, … , 𝑡𝑛 =෍

𝑖=0

𝑛

𝑐𝑖
𝑛
𝑖

−1
෍

𝑆⊆ 1…𝑛 ,
𝑆 =𝑖

ෑ

𝑗∈𝑆

𝑡𝑗

• The 𝑐𝑖 are related to the derivatives at 𝑡 = 0

• Hence: 𝑐𝑘 =
1

𝑘!

𝑑𝑘

𝑑𝑡𝑘
𝐹 0 =

𝑛
𝑘

𝑓 0,… , 0, ෠1,… , ෠1

• In general:
𝑑𝑘

𝑑𝑡𝑘
𝐹 𝑡 =

𝑛!

𝑛−𝑘 !
𝑓 𝑡, … , 𝑡, ෠1, … , ෠1

𝑛 − 𝑘 𝑘

𝑛 − 𝑘 𝑘

Example

𝑓 𝑡1, 𝑡2, 𝑡3 = 𝑐0 + 𝑐1
𝑡1 + 𝑡2 + 𝑡3

3
+ 𝑐2

𝑡1𝑡2 + 𝑡1𝑡3 + 𝑡2𝑡3
3

+ 𝑐3𝑡1𝑡2𝑡3

𝑓′ 𝑡 =
3!

2!
𝑐0 + 𝑐1

1 + 𝑡 + 𝑡

3
+ 𝑐2

1𝑡 + 𝑡𝑡 + 1𝑡

3
+ 𝑐31𝑡𝑡 − 𝑐0 + 𝑐1

0 + 𝑡 + 𝑡

3
+ 𝑐2

𝑡𝑡

3

= 3 𝑐1
1

3
+ 𝑐2

2𝑡

3
+ 𝑐3𝑡𝑡

= 3𝑐3𝑡
2 + 2𝑐2𝑡 + 𝑐1

Continuity Condition

Theorem: continuity condition for polynomials

The following statements are equivalent:

1. 𝐹 and 𝐺 are 𝐶𝑘-continuous at 𝑡

2. ∀𝑡1, … , 𝑡𝑘: 𝑓 𝑡, … , 𝑡, 𝑡1, … , 𝑡𝑘 = 𝑔 𝑡,… , 𝑡, 𝑡1, … , 𝑡𝑘

3. 𝑓 𝑡, … , 𝑡, ෠1, … , ෠1 = 𝑔 𝑡,… , 𝑡, ෠1,… , ෠1

2 ⇔ 3: 𝑓 𝑡, . . , 𝑡, 𝑡1 = 𝑓 𝑡,… , 𝑡, 𝑡1 − 0

= 𝑡1 𝑓 𝑡, … , 𝑡, 1 − 𝑓 𝑡, … , 𝑡, 0

= 𝑡1𝑓 𝑡, … , 𝑡, ෠1

𝑘-times 𝑘-times

Continuity Condition

Examples:

• ∀𝑡1, 𝑡2, 𝑡3: 𝑓 𝑡1, 𝑡2, 𝑡3 = 𝑔 𝑡1, 𝑡2, 𝑡3 ⇒ same curve

• ∀𝑡1, 𝑡2: 𝑓 𝑡1, 𝑡2, 𝑡 = 𝑔 𝑡1, 𝑡2, 𝑡 ⇒ 𝐶2 at 𝑡

• ∀𝑡1: 𝑓 𝑡1, 𝑡, 𝑡 = 𝑔 𝑡1, 𝑡, 𝑡 ⇒ 𝐶1 at 𝑡

• 𝑓 𝑡, 𝑡, 𝑡 = 𝑔 𝑡, 𝑡, 𝑡 ⇒ 𝐶0 at 𝑡

Raising the Degree

Raising the degree of a blossom:

• Can we directly construct a polar form with degree elevated by one
from a lower degree one, without changing the polynomial?

• [Other than transforming to monomials, adding 0 ∙ 𝑡𝑑+1, and
transforming back?]

Solution:

• Given: 𝑓 𝑡1, … , 𝑡𝑑

• We obtain: 𝑓 +1 𝑡1, … , 𝑡𝑑+1 =
1

𝑑+1
σ𝑖=1
𝑑+1𝑓 𝑡1, … , 𝑡𝑖−1, 𝑡𝑖+1, … , 𝑡𝑑+1

leave out 𝑡𝑖

Raising the Degree

Proof:

∀𝑡: 𝑓 +1 𝑡, … , 𝑡 =
1

𝑑 + 1
෍

𝑖=1

𝑑+1

𝑓 𝑡1, … , 𝑡𝑖−1, 𝑡𝑖+1, … , 𝑡𝑑+1 ቚ
𝑡1=⋯=𝑡𝑑+1=𝑡

⇒ 𝐹 +1 𝑡 = 𝐹 𝑡

=
1

𝑑 + 1
෍

𝑖=1

𝑑+1

𝑓 𝑡, … , 𝑡

= 𝑓 𝑡, … , 𝑡

Polars and Control Points

Interpretation (Examples):

• Multi-variate function: 𝑓 𝑡1, 𝑡2, 𝑡3
• Describes a point depending on three parameters
• Where 𝑓 𝑡1, 𝑡2, 𝑡3 moves for changing 𝑡1, 𝑡2, 𝑡3

(think of storing monomial coefficients inside)

• Polynomial value: 𝑓 1.5, 1.5, 1.5
• One value of the polynomial curve: 𝐹 1.5

• Off-curve points: 𝑓 1, 2, 3
• Evaluate points not necessarily on the polynomial curve
• Question: what meaning do various off-curve points have?
• We will use off-curve points as control points

Polars and Control Points

Interpretation (Examples):

• Specifying: 𝑓 𝑡1, 𝑡2, 𝑡3
• Assume, 𝑓 is not known yet
• We want to determine a polar (i.e. a polynomial)

• On-curve points:

𝑓 0,0,0 = 𝒙0, 𝑓 1,1,1 = 𝒙1, 𝑓 2,2,2 = 𝒙2, 𝑓 3,3,3 = 𝒙3
• Degree 𝑑 polynomial has 𝑑 + 1 degrees of freedom
• We know already how to do polynomial interpolation

• Off-curve points:

𝑓 1, 2, 3 = 𝒙123, 𝑓 2,3,4 = 𝒙234
• We can also use off-curve points to specify the polar/polynomial
• This is the main motivation for the whole formalism

Polar Forms & Blossoms
Bézier Splines

De Casteljau algorithm (from earlier)

Repeated convex combination of control points

𝒃𝑖
𝑟
= 1 − 𝑡 𝒃𝑖

𝑟−1 +𝑡𝒃𝑖+1
𝑟−1

𝒃0
0

𝒃1
0

𝒃2
0

𝒃3
0

𝑡
𝒃0

1

𝒃1
1

𝒃2
1

𝑡

𝑡

𝑡

𝑡

𝒃0
2

𝒃1
2 𝑡 𝒃0

3
= 𝑥(𝑡)

de Casteljau scheme

De Casteljau Algorithm

The de Casteljau algorithm is simple to state with blossoms:

• We just have to exchange the labels

• Then use the multi-affinity property in order to compute
intermediate points

• With this view, we can easily show that the de Casteljau algorithm
is equivalent to the formulation based on Bernstein polynomials

Key observation

𝑏 0, 0 1 − 𝑡 + 1𝑡, 1

𝑏 0, 0, 1 𝑏 0, 1, 1

De Castljau Algorithms for Bézier Curves

1 − 𝑡 3𝑝0 + 3 1 − 𝑡 2𝑡𝑝1 + 3 1 − 𝑡 𝑡2𝑝2 + 𝑡3𝑝3

𝑝0 𝑝1 𝑝2 𝑝3

De Castljau Algorithms for Bézier Curves

𝑏 𝑡, 𝑡, 𝑡

𝑏 0, 𝑡, 𝑡 𝑏 𝑡, 𝑡, 1

𝑏 𝑡, 1,1

𝑏 1,1,1𝑏 0,1,1𝑏 0,0,1𝑏 0,0,0

𝑏 0,0, 𝑡 𝑏 0, 𝑡, 1

De Castljau Algorithms for Bézier Curves

⟵Bézier curve

Bézier control points

𝑏 𝑡, 𝑡, 𝑡

𝑏 0, 𝑡, 𝑡 𝑏 𝑡, 𝑡, 1

𝑏 𝑡, 1,1

𝑏 1,1,1𝑏 0,1,1𝑏 0,0,1𝑏 0,0,0

𝑏 0,0, 𝑡 𝑏 0, 𝑡, 1

De Casteljau (Polar forms)

Bézier control points: 𝒑 0,0,0 , 𝒑 0,0,1 , 𝒑 0,1,1 , 𝒑 1,1,1

Analysis

Transforming a polar to the Bernstein basis:

𝑓 𝑡, … , 𝑡 = 1 − 𝑡 𝑓 𝑡, … , 𝑡, 0 + 𝑡𝑓 𝑡, … , 𝑡, 1

Analysis

Transforming a polar to the Bernstein basis:

𝑓 𝑡, … , 𝑡 = 1 − 𝑡 𝑓 𝑡, … , 𝑡, 0 + 𝑡𝑓 𝑡, … , 𝑡, 1

= 1 − 𝑡 1 − 𝑡 𝑓 𝑡, … , 𝑡, 0,0 + 𝑡𝑓 𝑡, … , 0,1 + 𝑡 1 − 𝑡 𝑓 𝑡, … , 𝑡, 1,0 + 𝑡𝑓 𝑡, … , 𝑡, 1,1

Analysis

Transforming a polar to the Bernstein basis:

𝑓 𝑡, … , 𝑡 = 1 − 𝑡 𝑓 𝑡, … , 𝑡, 0 + 𝑡𝑓 𝑡, … , 𝑡, 1

= 1 − 𝑡 1 − 𝑡 𝑓 𝑡, … , 𝑡, 0,0 + 𝑡𝑓 𝑡, … , 0,1 + 𝑡 1 − 𝑡 𝑓 𝑡, … , 𝑡, 1,0 + 𝑡𝑓 𝑡, … , 𝑡, 1,1

= 1 − 𝑡 2𝑓 𝑡, … , 𝑡, 0,0 + 2𝑡 1 − 𝑡 𝑡𝑓 𝑡, … , 0,1 + 𝑡2𝑓 𝑡, … , 𝑡, 1,1

Analysis

Transforming a polar to the Bernstein basis:

𝑛 − 𝑖 𝑖

𝑓 𝑡, … , 𝑡 = 1 − 𝑡 𝑓 𝑡, … , 𝑡, 0 + 𝑡𝑓 𝑡, … , 𝑡, 1

= 1 − 𝑡 1 − 𝑡 𝑓 𝑡, … , 𝑡, 0,0 + 𝑡𝑓 𝑡, … , 0,1 + 𝑡 1 − 𝑡 𝑓 𝑡, … , 𝑡, 1,0 + 𝑡𝑓 𝑡, … , 𝑡, 1,1

= 1 − 𝑡 2𝑓 𝑡, … , 𝑡, 0,0 + 2𝑡 1 − 𝑡 𝑡𝑓 𝑡, … , 0,1 + 𝑡2𝑓 𝑡, … , 𝑡, 1,1

= ⋯

=෍

𝑖=0

𝑛
𝑛
𝑖
𝑡𝑖 1 − 𝑡 𝑛−𝑖𝑓 0,… , 0,1, . . , 1

Analysis

De Castlejau Algorithm: Perform this in reverse order

• Bézier points:

• Intermediate points:

• Recursive computation:

Consequence: Bernstein / de Casteljau lead to the same result

𝑝𝑖
0

𝑡 = 𝑓 0,… , 0,1, … , 1

𝑝𝑖
𝑗
𝑡 = 𝑓 0,… , 0,1, … , 1, 𝑡, … , 𝑡

𝑝𝑖
𝑗
𝑡 = 𝑓 0,… , 0, 𝑡, … , 𝑡, 1, … , 1

= 1 − 𝑡 𝑓 0,… , 0, 𝑡, … , 𝑡, 1, … , 1 + 𝑡𝑓 0,… , 0, 𝑡, … , 𝑡, 1, … , 1

= 1 − 𝑡 𝑝𝑖
𝑗−1

𝑡 + 𝑡𝑝𝑖+1
𝑗−1

𝑡

𝑑 − 𝑖 𝑖

𝑑 − 𝑖 − 𝑗 𝑖 𝑗

𝑑 − 𝑖 − 𝑗 𝑗 𝑖

𝑑 − 𝑖 − 𝑗 + 1 𝑗 − 1 𝑖 𝑑 − 𝑖 − 𝑗 𝑗 − 1 𝑖 + 1

Generalized Parameter Intervals

• Let 𝑓 𝑡 be a Bézier curve of degree 𝑑 over the domain 𝑡 ∈ 𝑢, 𝑣

• Let 𝒑 be the polar form of 𝑓

• Then the Bézier points of 𝑓 are given in polar form as:
• 𝒃𝑖 = 𝑝 𝑢,… , 𝑢, 𝑣, … , 𝑣

Example for a cubic Bézier curve:
𝒑 𝑢, 𝑢, 𝑢 , 𝒑 𝑢, 𝑢, 𝑣 , 𝒑 𝑢, 𝑣, 𝑣 , 𝒑 𝑣, 𝑣, 𝑣

Generalized Parameter Intervals

Example for a cubic Bézier curve:
𝒑 𝑢, 𝑢, 𝑢 , 𝒑 𝑢, 𝑢, 𝑣 , 𝒑 𝑢, 𝑣, 𝑣 , 𝒑 𝑣, 𝑣, 𝑣

Multiple Segments

Bézier Control points:

𝒑 0,0,0 , 𝒑 0,0,1 , 𝒑 0,1,1 , 𝒑 1,1,1 = 𝒑 1,1,1 , 𝒑 1,1,2 , 𝒑 1,2,2 , 𝒑 2,2,2

Two Curve Segments:

𝒑 0,0,0 , 𝒑 0,0,1 , 𝒑 0,1,1 , 𝒑 1,1,1 , 𝒑 1,1,1 , 𝒑 1,1,2 , 𝒑 1,2,2 , 𝒑 2,2,2

Remark: no intersection between different segments

(e.g.: combination of 𝑝(0,1,1) and 𝑝(2,1,1) is not defined)

More Observations

Derivatives:

•
𝑑

𝑑𝑡
𝐹 𝑡 = 𝑑𝑓 𝑡, … , 𝑡, ෠1 = 𝑑 𝑓 𝑡, … , 𝑡, 1 − 𝑓 𝑡, … , 𝑡, 0 (degree 𝑑)

• 𝐶1 continuity condition follows

More Observations

Derivatives:

• de Casteljau algorithm computes tangent vectors at any points as a
byproduct

• Proportional to last line segment that is bisected

1

3
𝐹′ 𝑡

More Observations

Subdivision:

• After each de Casteljau step, we obtain two new control polygons left and right
of 𝑓 𝑡 describing the same curve.

• We can divide a segment into two

• Recursive subdivision can be used for rendering

Observations

Remark: The de Casteljau algorithm for computing

• Derivatives
• At end points

• At inner points 𝑡

• Subdivisions

Hold for Bézier curves of arbitrary degree 𝑑 ≥ 1

(General degree derivatives: 𝐹′ 𝑡 /𝑑)

More Bézier Curve Properties…

General degree elevation

• Increase the degree of a Bézier curve segment by one

• What are the new control points?

Polar forms:

• Old curve: 𝑏 𝑡1, … , 𝑡𝑑

• New curve: 𝑏 +1 𝑡1, … , 𝑡𝑑+1 =
1

𝑑 + 1
෍

𝑖=1

𝑑+1

𝑏 𝑡1, … , 𝑡𝑖−1, 𝑡𝑖+1, … , 𝑡𝑑+1

leave out 𝑡𝑖

Degree Elevation

𝒃 +1 0,… , 0 =
1

𝑑+1
σ𝑖=1
𝑑+1𝒃 0,… , 0 = 𝒃 0,… , 0

𝒃 +1 1,… , 0 =
1

𝑑+1
𝒃 0,… , 0 +

𝑑

𝑑+1
𝒃 1,0, … , 0

𝒃 +1 1,1,0, … , 0 =
2

𝑑+1
𝒃 0,… , 0 +

𝑑−1

𝑑+1
𝒃 1,1,0, … , 0

𝒃 +1 1,1,1, … , 1,0 =
𝑑

𝑑+1
𝒃 1,… , 1,0 +

1

𝑑+1
𝒃 1,… , 1

𝒃 +1 1,… , 1 = 𝒃 1,… , 1

Degree Elevation

Result: new control points

𝒑𝑖
+1

=
𝑖

𝑛+1
𝒑𝑖−1 + 1 −

𝑖

𝑛+1
𝒑𝑖 , 𝑖 = 0,… , 𝑛 + 1 (zero points if out of range)

Repeated degree elevation:

𝒑𝑖
+𝑘

=෍
𝑖=1

𝑑+1

𝒑𝒋

𝑑
𝑗

𝑘
𝑖−𝑗

𝑑+𝑘
𝑗

(proof by induction)

Repeating degree elevation let the control point converge to the Bézier
curve in the limit

Change of basis, the easy way

• Given: Polynomial 𝑝 𝑡 of degree 𝑛 in monomial form

• Wanted: coefficients of the same Bézier curve

Change of basis, the easy way

• Given: Polynomial 𝑝 𝑡 of degree 𝑛 in monomial form

• Wanted: coefficients of the same Bézier curve

• Solution:

𝑝 𝑡 → 𝑏 𝑡1, … , 𝑡𝑛

coefficients: 𝑏 0,… , 0,1, … 1

• This is a direct implication of de Casteljau in polar form

𝑛 + 1 − 𝑘 𝑘

Example

• Example: Bézier coefficients of 𝑝 𝑡 = 1 + 2𝑡 + 3𝑡2 − 𝑡3

1 0 0 0
−3 3 0 0
3 −6 3 0
−1 3 −3 1

−1
1
2
3
−1

=

1
Τ5 3
Τ10 3
5

Example

• Using polar forms

𝑏 𝑡0, 𝑡1, 𝑡2 = 1 + 2
𝑡0 + 𝑡1 + 𝑡2

3
+ 3

𝑡0𝑡1 + 𝑡1𝑡2 + 𝑡0𝑡2
3

− 𝑡0𝑡1𝑡2

𝑏 0,0,0 = 1, 𝑏 0,0,1 =
5

3
, 𝑏 0,1,1 =

10

3
, 𝑏 1,1,1 = 5

Polar Forms & Blossoms
B-Splines

B-Spline Curves in Polar Form

An unique description in polar form exists for piecewise
polynomial curves as well

• Given: B-Spline curve 𝒙 of order 𝑘
• with knot vector 𝑇 = 𝑡0, … , 𝑡𝑛+𝑘
• and de Boor points 𝒅0, … , 𝒅𝑛

• Let 𝒙 be the polar form of 𝒙

• Then the de Boor points of 𝒙 are given as:
• 𝒅𝑖 = 𝒙 𝑡𝑖+1, … , 𝑡𝑖+𝑘−1

we just use consecutive knot values

as blossom arguments

B-Spline Curves in Polar form

• Example: 𝑘 = 4, 𝑛 = 5

De Boor Algorithm in Polar Form

de Boor algorithm in polar form

• To Define the curve value at 𝑡, we look for the relevant part of the
de Boor polygon, i.e.,

→ the (partial) knot sequence
𝑟𝑘−1 ≤ ⋯ ≤ 𝑟1 < 𝑠1 ≤ ⋯ ≤ 𝑠𝑘−1

with 𝑟1 ≤ 𝑡 < 𝑠1

De Boor Algorithm in Polar Form

de Boor algorithm in polar form

• Then the intermediate points of the de Boor algorithm result are

𝑑𝑗
𝑙 𝑡 = 𝑥 𝑟1, … , 𝑟𝑘−1−𝑙−𝑗 , 𝑡, … , 𝑡, 𝑠1, … , 𝑠𝑗

and the desired curve point is
𝑥 𝑡 = 𝑥 𝑡, … , 𝑡

𝑘 − 1

𝑙

De Boor Algorithm in Polar form

Example: 𝑘 = 4

Key observation

𝑓 𝑡2, 𝑡3, 𝑡

𝑓 𝑡1, 𝑡2, 𝑡3 𝑓 𝑡2, 𝑡3, 𝑡4

𝑡4 − 𝑡

𝑡4 − 𝑡1

𝑡 − 𝑡1
𝑡4 − 𝑡1

De Boor Alg. In Polar form

• For 𝑡3 ≤ 𝑡 < 𝑡4 𝑓 𝑡, 𝑡, 𝑡

𝑓 𝑡3, 𝑡, 𝑡 𝑓 𝑡4, 𝑡, 𝑡

𝑓 𝑡2, 𝑡3, 𝑡 𝑓 𝑡3, 𝑡4, 𝑡 𝑓 𝑡4, 𝑡5, 𝑡

𝑓 𝑡1, 𝑡2, 𝑡3 𝑓 𝑡2, 𝑡3, 𝑡4 𝑓 𝑡3, 𝑡4, 𝑡5 𝑓 𝑡4, 𝑡5, 𝑡6

𝑡4 − 𝑡

𝑡4 − 𝑡3

𝑡 − 𝑡3
𝑡4 − 𝑡3

𝑡 − 𝑡3
𝑡5 − 𝑡3

𝑡 − 𝑡3
𝑡6 − 𝑡3𝑡6 − 𝑡

𝑡6 − 𝑡3

𝑡5 − 𝑡

𝑡5 − 𝑡3

𝑡4 − 𝑡

𝑡4 − 𝑡2

𝑡4 − 𝑡

𝑡4 − 𝑡1
𝑡 − 𝑡1
𝑡4 − 𝑡1

𝑡 − 𝑡2
𝑡4 − 𝑡2

𝑡5 − 𝑡

𝑡5 − 𝑡2 𝑡 − 𝑡2
𝑡5 − 𝑡2

De Boor Algorithm in Polar Form

for 2 ≤ 𝑡 < 3

𝑡 =
5

2

B-Splines in Polar form

• For 𝑡2 ≤ 𝑡 < 𝑡3 𝑓 𝑡, 𝑡, 𝑡

𝑓 𝑡2, 𝑡, 𝑡 𝑓 𝑡3, 𝑡, 𝑡

𝑓 𝑡1, 𝑡2, 𝑡 𝑓 𝑡2, 𝑡3, 𝑡 𝑓 𝑡3, 𝑡4, 𝑡

𝑓 𝑡0, 𝑡1, 𝑡2 𝑓 𝑡1, 𝑡2, 𝑡3 𝑓 𝑡2, 𝑡3, 𝑡4 𝑓 𝑡3, 𝑡4, 𝑡5

𝑡3 − 𝑡

𝑡3 − 𝑡2

𝑡 − 𝑡2
𝑡3 − 𝑡2

𝑡 − 𝑡2
𝑡4 − 𝑡2

𝑡 − 𝑡2
𝑡5 − 𝑡2𝑡5 − 𝑡

𝑡5 − 𝑡2

𝑡4 − 𝑡

𝑡4 − 𝑡2

𝑡3 − 𝑡

𝑡3 − 𝑡1

𝑡3 − 𝑡

𝑡3 − 𝑡0
𝑡 − 𝑡0
𝑡3 − 𝑡0

𝑡 − 𝑡1
𝑡3 − 𝑡1

𝑡4 − 𝑡

𝑡4 − 𝑡1 𝑡 − 𝑡1
𝑡4 − 𝑡1

B-Splines in Polar form

• For 𝑡3 ≤ 𝑡 < 𝑡4 𝑓 𝑡, 𝑡, 𝑡

𝑓 𝑡3, 𝑡, 𝑡 𝑓 𝑡4, 𝑡, 𝑡

𝑓 𝑡2, 𝑡3, 𝑡 𝑓 𝑡3, 𝑡4, 𝑡 𝑓 𝑡4, 𝑡5, 𝑡

𝑓 𝑡1, 𝑡2, 𝑡3 𝑓 𝑡2, 𝑡3, 𝑡4 𝑓 𝑡3, 𝑡4, 𝑡5 𝑓 𝑡4, 𝑡5, 𝑡6

𝑡4 − 𝑡

𝑡4 − 𝑡3

𝑡 − 𝑡3
𝑡4 − 𝑡3

𝑡 − 𝑡3
𝑡5 − 𝑡3

𝑡 − 𝑡3
𝑡6 − 𝑡3𝑡6 − 𝑡

𝑡6 − 𝑡3

𝑡5 − 𝑡

𝑡5 − 𝑡3

𝑡4 − 𝑡

𝑡4 − 𝑡2

𝑡4 − 𝑡

𝑡4 − 𝑡1
𝑡 − 𝑡1
𝑡4 − 𝑡1

𝑡 − 𝑡2
𝑡4 − 𝑡2

𝑡5 − 𝑡

𝑡5 − 𝑡2 𝑡 − 𝑡2
𝑡5 − 𝑡2

B-Splines in Polar form

𝑓 𝑡, 𝑡, 𝑡

𝑓 𝑡3, 𝑡, 𝑡 𝑓 𝑡4, 𝑡, 𝑡

𝑓 𝑡2, 𝑡3, 𝑡 𝑓 𝑡3, 𝑡4, 𝑡 𝑓 𝑡4, 𝑡5, 𝑡

𝑓 𝑡1, 𝑡2, 𝑡3 𝑓 𝑡2, 𝑡3, 𝑡4 𝑓 𝑡3, 𝑡4, 𝑡5 𝑓 𝑡4, 𝑡5, 𝑡6

𝑡4 − 𝑡

𝑡4 − 𝑡3

𝑡 − 𝑡3
𝑡4 − 𝑡3

𝑡 − 𝑡3
𝑡5 − 𝑡3

𝑡 − 𝑡3
𝑡6 − 𝑡3𝑡6 − 𝑡

𝑡6 − 𝑡3

𝑡5 − 𝑡

𝑡5 − 𝑡3

𝑡4 − 𝑡

𝑡4 − 𝑡2

𝑡4 − 𝑡

𝑡4 − 𝑡1
𝑡 − 𝑡1
𝑡4 − 𝑡1

𝑡 − 𝑡2
𝑡4 − 𝑡2

𝑡5 − 𝑡

𝑡5 − 𝑡2 𝑡 − 𝑡2
𝑡5 − 𝑡2

𝑓 𝑡, 𝑡, 𝑡

𝑓 𝑡2, 𝑡, 𝑡

𝑓 𝑡1, 𝑡2, 𝑡

𝑓 𝑡0, 𝑡1, 𝑡2

𝑡3 − 𝑡

𝑡3 − 𝑡2
𝑡 − 𝑡2
𝑡3 − 𝑡2

𝑡3 − 𝑡

𝑡3 − 𝑡1

𝑡3 − 𝑡

𝑡3 − 𝑡0
𝑡 − 𝑡0
𝑡3 − 𝑡0

𝑡 − 𝑡1
𝑡3 − 𝑡1

Example: General Case

Example: General Case

Example: General Case

Example: General Case

Knot Insertion

Knot insertion

• Increases the number of curve segments, but not the
polynomial degree

• Insertion at 𝑡: First step of the de Boor algorithm!

Knot Insertion

• Insertion of knots Example

Polar Forms & Blossoms
Illustrations

Structure

Bézier Spline

B-Spline

Structure
Bézier Spline

B-Spline

Rational Spline Curves
Projective Geometry · Rational Bézier Curves · NURBS

陈仁杰
renjiec@ustc.edu.cn

http://staff.ustc.edu.cn/~renjiec

Computer Aided Geometric Design
Fall Semester 2024

mailto:renjiec@ustc.edu.cn
http://staff.ustc.edu.cn/~renjiec

Some Projective Geometry

Projective Geometry

• A very short overview of projective geometry
• The computer graphics perspective

• Formal definition

Homogeneous Coordinates

• Problem
• Linear maps (matrix multiplication in ℝ𝑑) can represent …

• Rotations

• Scaling

• Shearing

• Orthogonal projection

• …but not:
• Translations

• Perspective projections

• This is a problem in computer graphics:
• We would like to represent compound operations in a single closed representation

Translations

• “Quick Hack” #1: Translations
• Linear maps cannot represent translations:

• Every linear map maps the zero vector to zero 𝑀0 = 0

• Thus, non-trivial translations are non-linear

• Solution:
• Add one dimension to each vector

• Fill in a one

• Now we can do translations by adding multiplies of the one:

𝑀𝑥 =
𝑟11 𝑟21 𝑡𝑥
𝑟12 𝑟22 𝑡𝑦
0 0 1

𝑥
𝑦
1

=
𝑟11 𝑟21
𝑟12 𝑟22

𝑥
𝑦 +

𝑡𝑥
𝑡𝑦

1

Normalization

Problem: what if the last entry is not 1?
• It’s not a bug, it’s a feature…

• If the last component is not 1, divide everything by it before using the result

𝒙 →
𝜔𝒙
𝜔

1

𝜔
𝒙 ←

𝒙
𝜔

Cartesian coordinates
(Euclidian space)

Homogenous coordinates
(projective space)

Notation

Notation:
• The extra component is called the homogenous component of the vector.

• It is usually denoted by 𝜔:

◼ 2D case:

𝑥
𝑦 →

𝜔𝑥
𝜔𝑦
𝜔

◼ 3D case:

𝑥
𝑦
𝑧

→

𝜔𝑥
𝜔𝑦
𝜔𝑧
𝜔

◼ Ceneral case:

𝒙 →
𝜔𝒙
𝜔

Perspective Projections

New Feature: Perspective projections
• Very useful for 3D computer graphics

• Perspective projection (central projection)
• involves divisions

• can be packed into homogeneous component

Perspective Projection

Physical camera:

Virtual camera:

Perspective Projection

Perspective projection: 𝑥′ = 𝑑
𝑥

𝑧
, 𝑦′ = 𝑑

𝑦

𝑧

Homogenous Transformation

• Projection as linear transformation in homogenous
coordinates:
• Trick: Put the denominator into the 𝜔 component

𝑥′ = 𝑑
𝑥

𝑧
, 𝑦′ = 𝑑

𝑦

𝑧

𝑥′

𝑦′

𝑧′

𝜔′

=

𝑑 0 0 0
0 𝑑 0 0
0 0 𝑑 0
0 0 1 0

𝑥
𝑦
𝑧
1

Formal Definition

Projective Space 𝑷𝒅

• Embed Euclidian space 𝐸𝑑

• Into 𝑑 + 1 dimensional Euclidian space at 𝜔 = 1

• Additional dimension usually named 𝜔

• Identify all points on lines through the origin
• Representing the same Euclidian point

Question

Can we represent a circle arc using a Bézier curve?

Approximation of Circle using Cubic Bézier Evaluation of 𝒙𝟐 + 𝒚𝟐 for points on the Bézier curve

Rational Curves

• Motivation
• Bézier and B-spline curves cannot represent

conic sections (circles, hyperbolas, etc.)

• But we require those for some tasks

• Goal
• Uniform and easily manageable description of

polynomial curves and conic sections

• Idea
• Control points are equipped with weights…but

not any weights!

Planetarium of the St. Louis Science Center

Tycho Brahe Planetarium, Copenhagen

Quadrics and Conics

Modeling Wish List

We want to model:
• Circles (surfaces: Spheres)
• Ellipses (surfaces: Ellipsoids)
• And segments of those
• Surfaces: Objects with circular cross section

• Cylinders

• Cones

• Surfaces of revolution (lathing)

These objects cannot be represented exactly by piecewise
polynomials (they are only approximated)

Conical Sections

Classic description of such objects:
• Conical sections (conics)

• Intersections of a cone and a plane

• Resulting Objects:
• Circles

• Ellipses

• Hyperbolas

• Parabolas

• Points

• Lines

Conic Sections

•

Circle,
Ellipse

Hyperbola Parabola Line
(degenerate case)

Point
(degenerate case)

Implicit Form

Implicit quadrics:
• Conic sections can be expressed as zero set of a quadratic function:

𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑦2 + 𝑑𝑥 + 𝑒𝑦 + 𝑓 = 0

⇔ 𝒙𝑇
𝑎 ൗ𝑏 2

ൗ𝑏 2 𝑐
𝒙 + 𝑑 𝑒 𝒙 + 𝑓 = 0

• Easy to see why:

Implicit eq. for a cone: 𝐴𝑥2 + 𝑏𝑦2 = 𝑧2

Explicit eq. for a plane: 𝑧 = 𝐷𝑥 + 𝐸𝑦 + 𝐹

Conical Section: 𝐴𝑥2 + 𝐵𝑦2 = 𝐷𝑥 + 𝐸𝑦 + 𝐹 2

Quadrics & Conics

Quadrics:
• Zero sets of quadratic functions (any dimension) are called quadrics:

𝒙 ∈ ℝ𝑑 | 𝒙𝑻𝑴𝒙+ 𝒃𝑻𝒙 + 𝒄 = 𝟎

• Conics are the special case for 𝑑 = 2

Shapes of Quadratic Polynomials

𝜆1 = 1, 𝜆2 = 1 𝜆1 = 1, 𝜆2 = −1 𝜆1 = 1, 𝜆2 = 0

The Iso-Lines: Quadrics

Elliptic

𝜆1 > 0, 𝜆2 > 0

hyperbolic

𝜆1 < 0, 𝜆2 > 0

degenerate case

𝜆1 = 0, 𝜆2 > 0

Characterization

Determining the type of Conic from the implicit form:
• Implicit function: quadratic polynomial

𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑦2 + 𝑑𝑥 + 𝑒𝑦 + 𝑓 = 0

⇔ 𝒙𝑇
𝑎 ൗ𝑏 2

ൗ𝑏 2 𝑐
𝒙 + 𝑑 𝑒 𝒙 + 𝑓 = 0

• Eigenvalues of 𝑀

𝜆1,2 =
𝑎 + 𝑐

2
±
1

2
𝑎 − 𝑐 2 + 𝑏2

𝑀

Cases

We obtain the following cases:
• Ellipse: 𝑏2 < 4𝑎𝑐

• Circle: 𝑏 = 0, 𝑎 = 𝑐

• Otherwise: general ellipse

• Parabola: 𝑏2 = 4𝑎𝑐 (border case)

• Hyperbola: 𝑏2 > 4𝑎𝑐

Implicit function:
𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑦2 + 𝑑𝑥 + 𝑒𝑦 + 𝑓 = 0

Cases

Explanation:

𝑏2 = 4𝑎𝑐 ⇒ 𝜆1,2 =
𝑎 + 𝑐

2
±
1

2
𝑎 − 𝑐 2 + 4𝑎𝑐

Implicit function:
𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑦2 + 𝑑𝑥 + 𝑒𝑦 + 𝑓 = 0

=
𝑎 + 𝑐

2
±
1

2
𝑎2 − 2𝑎𝑐 + 𝑐2 + 4𝑎𝑐

=
𝑎 + 𝑐

2
±
1

2
𝑎2 + 2𝑎𝑐 + 𝑐2

=
𝑎 + 𝑐

2
±
1

2
𝑎 + 𝑐 2

=
𝑎 + 𝑐

2
±
𝑎 + 𝑐

2
= 0, 𝑎 + 𝑐

Polynomial Curves & Conics

We want to represent conics with parametric curves:
• How can we represent (pieces) of conics as parametric curves?

• How can we generalize our framework of piecewise polynomial curves to
include conical sections?

Projections of Parabolas:
• We will look at a certain class of parametric functions – projections of

parabolas

• This class turns out to be general enough

• And can be expressed easily with the tools we know.

Projections of Parabolas

Definition: Projection of a Parabola
• We start with a quadratic space curve

• Interpret the 𝑧-coordinate as homogenous component 𝜔

• Project the curve on the plane 𝜔 = 1

Projected Parabola

Formal Definition:
• Quadratic polynomial curve in three space
• Project by dividing by the third coordinates

𝒇(ℎ𝑜𝑚) 𝑡 = 𝒑0 + 𝑡𝒑1 + 𝑡2𝒑2 =

𝒑0. 𝑥
𝒑0. 𝑦
𝒑0. 𝜔

+ 𝑡

𝒑1. 𝑥
𝒑1. 𝑦
𝒑1. 𝜔

+ 𝑡2
𝒑2. 𝑥
𝒑2. 𝑦
𝒑2. 𝜔

𝒇(𝑒𝑢𝑐𝑙) 𝑡 =

𝒑0. 𝑥
𝒑0. 𝑦

+ 𝑡
𝒑1. 𝑥
𝒑1. 𝑦

+ 𝑡2
𝒑2. 𝑥
𝒑2. 𝑦

𝒑0. 𝜔 + 𝑡𝒑1. 𝜔 + 𝑡2𝒑2. 𝜔

Parameterizing Conics

Conics can be parameterized using projected parabolas:
• We show that we can represent (piecewise):

• Points and lines (obvious ✓)

• A unit parabola

• A unit circle

• A unit hyperbola

• General cases (ellipses etc.) can be obtained by affine mappings of the
control points (which leads to affine maps of the curve)

Parameterizing Parabolas

Parabolas as rational parametric curves:

𝒇(𝑒𝑢𝑐𝑙) 𝑡 =

0
0

+ 𝑡
1
0

+ 𝑡2
0
1

1 + 0𝑡 + 0𝑡2
𝑥 𝑡 = 𝑡

𝑦 𝑡 = 𝑡2
 ✓ (obvious)

Circle

Let’s try to find a rational parameterization of a (piece of a) unit circle:

𝒇 𝑒𝑢𝑐𝑙 𝜑 =
cos𝜑
sin𝜑

Circle

Let’s try to find a rational parameterization of a (piece of a) unit circle:

𝒇 𝑒𝑢𝑐𝑙 𝜑 =
cos𝜑
sin𝜑

cos𝜑 =
1−tan2

𝜑

2

1+tan2
𝜑

2

, sin𝜑 =
2 tan

𝜑

2

1+tan2
𝜑

2

 (tangent half-angle formula)

𝑡 ≔ tan
𝜑

2
⇒ 𝒇 𝑒𝑢𝑐𝑙 𝜑 =

1−𝑡2

1+𝑡2

2𝑡

1+𝑡2

Circle

Let’s try to find a rational parameterization of a (piece of a) unit circle:

𝒇 𝑒𝑢𝑐𝑙 𝜑 =
cos𝜑
sin𝜑 =

1−𝑡2

1+𝑡2

2𝑡

1+𝑡2

with 𝑡 ≔ tan
𝜑

2

⇒ 𝒇(ℎ𝑜𝑚) 𝑡 =
1 − 𝑡2

2𝑡
1 + 𝑡2

parameterization for 𝜑 ∈ −
𝜋

2
,
𝜋

2

⇒ we need at least three segments
to parametrize a full circle

Hyperbolas

Unit Circle: 𝑥2 + 𝑦2 = 1

⇒ 𝑥 𝑡 =
1 − 𝑡2

1 + 𝑡2
, 𝑦 𝑡 =

2𝑡

1 + 𝑡2
𝑡 ∈ ℝ

Unit Hyperbola: 𝑥2 − 𝑦2 = 1

⇒ 𝑥 𝑡 =
1 + 𝑡2

1 − 𝑡2
, 𝑦 𝑡 =

2𝑡

1 − 𝑡2
, 𝑡 ∈ 0, 1

Rational Bézier Curves

Rational Bézier Curves

Rational Bézier curves in ℝ𝑛 of degree 𝑑:
• Form a Bézier curve of degree 𝑑 in 𝑛 + 1 dimensional space

• Interpret last coordinates as homogenous component

• Euclidean coordinates are obtained by projection

𝒇 ℎ𝑜𝑚 𝑡 = σ𝑖=0
𝑛 𝐵𝑖

𝑑
𝑡 𝒑𝑖 , 𝒑𝑖 ∈ ℝ𝑛+1

𝒇 𝑒𝑢𝑐𝑙 𝑡 =

σ𝑖=0
𝑛 𝐵𝑖

𝑑
𝑡

𝑝𝑖
1

…

𝑝𝑖
𝑛

σ𝑖=0
𝑛 𝐵𝑖

𝑑
𝑡 𝑝𝑖

𝑛+1

More Convenient Notation

The curve can be written in “weighted points” form:

𝒇 𝑒𝑢𝑐𝑙 𝑡 =

σ𝑖=0
𝑛 𝐵𝑖

𝑑
𝑡 𝜔𝑖

𝑝𝑖
1

…

𝑝𝑖
𝑛

σ𝑖=0
𝑛 𝐵𝑖

𝑑
𝑡 𝜔𝒊

Interpretation:
• Points are weighted by weights 𝜔𝑖

• Normalized by interpolated weights in the denominator
• Large weights → more influence of that point

Properties

What about affine invariance, convex hull prop.?

𝒇 𝑒𝑢𝑐𝑙 𝑡 =෍

𝑖=0

𝑛

𝒑𝑖
𝐵𝑖

𝑑
𝑡 𝜔𝑖

σ𝑗=0
𝑛 𝐵𝑗

𝑑
𝑡 𝜔𝑖

=෍

𝑖=0

𝑛

𝑞𝑖 𝑡 𝒑𝑖

Consequences:
• Affine invariance still holds

• For strictly positive weights:
• Convex hull property still holds

• This is not a big restriction (potential singularities otherwise)

• Projective invariance (projective maps, hom. coord’s)

with σ𝑖=0
𝑛 𝑞𝑖 𝑡 = 1

Rational Bézier Curves

Geometric interpretation of rational Bézier curves:
• Rational Bézier curves are obtained by central projection of “normal”

Bézier curves

Rational Bézier Curves

Examples:
• 𝜔𝑖 = 1 𝑖 = 0,… , 𝑛 : “normal” Bézier curves

• Generally:
• Each conic section can be described as rational Bézier curve of degree two

• Each rational Bézier curve of degree two is a conic section

• Example: Circular arc

Rational de Casteljau Algorithm

Evaluation with de Casteljau Algorithm
• Three variants:

• Compute in 𝑛 + 1 dimensional space, then project

• Compute numerator and denominator separately, then divide

• Divide in each intermediate step (“rational de Casteljau”)

• Non-rational de Casteljau algorithm:

𝒃𝑖
𝑟

𝑡 = 1 − 𝑡 𝒃𝑖
𝑟−1

𝑡 + 𝑡𝒃𝑖+1
𝑟−1

𝑡

• Rational de Casteljau algorithm

𝒃𝑖
𝑟

𝑡 = 1 − 𝑡
𝜔𝑖

𝑟−1
𝑡

𝜔𝑖
𝑟

𝑡
𝒃𝑖

𝑟−1
𝑡 + 𝑡

𝜔𝑖+1
𝑟−1

𝑡

𝜔𝑖
𝑟

𝑡
𝒃𝑖+1

𝑟−1
𝑡

with 𝜔𝑖
𝑟

𝑡 = 1 − 𝑡 𝜔𝑖
𝑟−1

𝑡 +𝑡𝜔𝑖+1
𝑟−1

𝑡

Rational de Casteljau Algorithm

Advantages:
• More intuitive (repeated weighted linear interpolation of points and

weights)

• Numerically more stable (only convex combinations for the standard case
of positive weights, 𝑡 ∈ 0,1)

Influence of the Weights

Influence of the weights on the curve shape:
• Increasing 𝜔𝑖 moves the curve towards the Bézier point 𝑏𝑖
• Examples:

Influence of the Weights

Moving a control point

Not the same!

Increasing the weight of a control point

Quadratic Bézier Curves

• Quadratic curves:
• Necessary and sufficient to represent conics

• Therefore, we will examine them closer …

• Quadratic rational Bézier curve:

𝒇 𝑒𝑢𝑐𝑙 𝑡 =
𝐵0

2
𝑡 𝜔0𝒑0 + 𝐵1

2
𝑡 𝜔1𝒑1 + 𝐵2

2
𝑡 𝜔2𝒑2

𝐵0
2

𝑡 𝜔0 + 𝐵1
2

𝑡 𝜔1 + 𝐵2
2

𝑡 𝜔2

, 𝒑𝑖 ∈ ℝ𝑛, 𝜔𝑖 ∈ ℝ

Standard Form (or Normal Form)

How many degrees of freedom are in the weights?
• Quadratic rational Bézier curve:

𝑓 𝑒𝑢𝑐𝑙 𝑡 =
𝐵0

2
𝑡 𝜔0𝒑0 + 𝐵1

2
𝑡 𝜔1𝒑1 + 𝐵2

2
𝑡 𝜔2𝒑2

𝐵0
2

𝑡 𝜔0 + 𝐵1
2

𝑡 𝜔1 + 𝐵2
2

𝑡 𝜔2

If one of the weights is ≠ 0 (which must be the case), we can divide
numerator and denominator by this weight and thus remove one degree
of freedom. No impact on the curve.

If we are only interested in the shape of the curve, we can remove one
more degree of freedom by a reparameterization … No impact on shape
of the curve

Standard Form

How many degrees of freedom are in the weights?
• Concerning the shape of the curve, the parameterization does not matter

• We have

𝑓 𝑒𝑢𝑐𝑙 𝑡 =
1 − 𝑡 2𝜔0𝒑0 + 2𝑡 1 − 𝑡 𝜔1𝒑1 + 𝑡2𝜔2𝒑2

1 − 𝑡 2𝜔0 + 2𝑡 1 − 𝑡 𝜔1 + 𝑡2𝜔2

• We set: (with 𝛼 to be determined later)

𝑡 ←
ሚ𝑡

𝛼 1−ሚ𝑡 +ሚ𝑡
, i.e., 1 − 𝑡 ←

𝛼 1−ሚ𝑡

𝛼 1−ሚ𝑡 +ሚ𝑡

Remark: Why this reparameterization?

Reparameterization:

𝑡 ←
ǁ𝑡

𝛼 1 − ǁ𝑡 + ǁ𝑡

Properties:
• 0 → 0, 1 → 1,

monotonic in between

• Shape determined by
parameter 𝛼

Standard Form

𝑡 ←
ሚ𝑡

𝛼 1−ሚ𝑡 +ሚ𝑡
, i.e., 1 − 𝑡 ←

𝛼 1−ሚ𝑡

𝛼 1−ሚ𝑡 +ሚ𝑡

Standard Form

𝒇 𝑒𝑢𝑐𝑙 𝑡 =

𝛼 1 − ǁ𝑡
𝛼 1 − ǁ𝑡 + ǁ𝑡

2

𝜔0𝒑0 + 2
𝛼 1 − ǁ𝑡

𝛼 1 − ǁ𝑡 + ǁ𝑡

ǁ𝑡
𝛼 1 − ǁ𝑡 + ǁ𝑡

𝜔1𝒑1 +
ǁ𝑡

𝛼 1 − ǁ𝑡 + ǁ𝑡

2

𝜔2𝒑2

𝛼 1 − ǁ𝑡
𝛼 1 − ǁ𝑡 + ǁ𝑡

2

𝜔0 + 2
𝛼 1 − ǁ𝑡

𝛼 1 − ǁ𝑡 + ǁ𝑡

ǁ𝑡
𝛼 1 − ǁ𝑡 + ǁ𝑡

𝜔1 +
ǁ𝑡

𝛼 1 − ǁ𝑡 + ǁ𝑡

2

𝜔2

=
𝛼2 1 − ǁ𝑡 2𝜔0𝒑0 + 2𝛼 1 − ǁ𝑡 ǁ𝑡𝜔1𝒑1 + ǁ𝑡2𝜔2𝒑2

𝛼2 1 − ǁ𝑡 2𝜔0 + 2𝛼 1 − ǁ𝑡 ǁ𝑡𝜔1 + ǁ𝑡2𝜔2

𝑡 ←
ሚ𝑡

𝛼 1−ሚ𝑡 +ሚ𝑡
, i.e., 1 − 𝑡 ←

𝛼 1−ሚ𝑡

𝛼 1−ሚ𝑡 +ሚ𝑡

Standard Form

𝒇 𝑒𝑢𝑐𝑙 𝑡 =

𝛼 1 − ǁ𝑡
𝛼 1 − ǁ𝑡 + ǁ𝑡

2

𝜔0𝒑0 + 2
𝛼 1 − ǁ𝑡

𝛼 1 − ǁ𝑡 + ǁ𝑡

ǁ𝑡
𝛼 1 − ǁ𝑡 + ǁ𝑡

𝜔1𝒑1 +
ǁ𝑡

𝛼 1 − ǁ𝑡 + ǁ𝑡

2

𝜔2𝒑2

𝛼 1 − ǁ𝑡
𝛼 1 − ǁ𝑡 + ǁ𝑡

2

𝜔0 + 2
𝛼 1 − ǁ𝑡

𝛼 1 − ǁ𝑡 + ǁ𝑡

ǁ𝑡
𝛼 1 − ǁ𝑡 + ǁ𝑡

𝜔1 +
ǁ𝑡

𝛼 1 − ǁ𝑡 + ǁ𝑡

2

𝜔2

=
𝛼2 1 − ǁ𝑡 2𝜔0𝒑0 + 2𝛼 1 − ǁ𝑡 ǁ𝑡𝜔1𝒑1 + ǁ𝑡2𝜔2𝒑2

𝛼2 1 − ǁ𝑡 2𝜔0 + 2𝛼 1 − ǁ𝑡 ǁ𝑡𝜔1 + ǁ𝑡2𝜔2

=
𝛼2𝐵0

2 ǁ𝑡 𝜔0𝒑0 + 𝛼𝐵1
2 ǁ𝑡 𝜔1𝒑1 + 𝐵2

2 ǁ𝑡 𝜔2𝒑2

𝛼2𝐵0
2 ǁ𝑡 𝜔0 + 𝛼𝐵1

2 ǁ𝑡 𝜔1 + 𝐵2
2 ǁ𝑡 𝜔2

𝑡 ←
ሚ𝑡

𝛼 1−ሚ𝑡 +ሚ𝑡
, i.e., 1 − 𝑡 ←

𝛼 1−ሚ𝑡

𝛼 1−ሚ𝑡 +ሚ𝑡

Standard Form

𝒇 𝑒𝑢𝑐𝑙 𝑡 =
𝛼2𝐵0

2 ሚ𝑡 𝜔0𝒑0+𝛼𝐵1
2 ሚ𝑡 𝜔1𝒑1+𝐵2

2 ሚ𝑡 𝜔2𝒑2

𝛼2𝐵0
2 ሚ𝑡 𝜔0+𝛼𝐵1

2 ሚ𝑡 𝜔1+𝐵2
2 ሚ𝑡 𝜔2

let 𝛼 =
𝜔2

𝜔0
 (assume 0 ≤

𝜔2

𝜔0
< ∞)

Standard Form

𝒇 𝑒𝑢𝑐𝑙 𝑡 =
𝛼2𝐵0

2 ሚ𝑡 𝜔0𝒑0+𝛼𝐵1
2 ሚ𝑡 𝜔1𝒑1+𝐵2

2 ሚ𝑡 𝜔2𝒑2

𝛼2𝐵0
2 ሚ𝑡 𝜔0+𝛼𝐵1

2 ሚ𝑡 𝜔1+𝐵2
2 ሚ𝑡 𝜔2

let 𝛼 =
𝜔2

𝜔0
 (assume 0 ≤

𝜔2

𝜔0
< ∞)

𝒇 𝑒𝑢𝑐𝑙 𝑡 =

𝐵0
2 ǁ𝑡

𝜔2
𝜔0

𝟐

𝜔0𝒑0 + 𝐵1
2 ǁ𝑡

𝜔2
𝜔0

𝜔1𝒑1 + 𝐵2
2 ǁ𝑡 𝜔2𝒑2

𝐵0
2 ǁ𝑡

𝜔2
𝜔0

2

𝜔0 + 𝐵1
2 ǁ𝑡

𝜔2
𝜔0

𝜔1 + 𝐵2
2 ǁ𝑡 𝜔2

=

𝐵0
2 ǁ𝑡 𝜔2𝒑0 + 𝐵1

2 ǁ𝑡
𝜔2
𝜔0

𝜔1𝒑1 + 𝐵2
2 ǁ𝑡 𝜔2𝒑2

𝐵0
2 ǁ𝑡 𝜔2 + 𝐵1

2 ǁ𝑡
𝜔2
𝜔0

𝜔1 + 𝐵2
2 ǁ𝑡 𝜔2

Standard Form

𝒇 𝑒𝑢𝑐𝑙 𝑡 =

𝐵0
2 ǁ𝑡 𝜔2𝒑0 + 𝐵1

2 ǁ𝑡
𝜔2
𝜔0

𝜔1𝒑1 + 𝐵2
2 ǁ𝑡 𝜔2𝒑2

𝐵0
2 ǁ𝑡 𝜔2 + 𝐵1

2 ǁ𝑡
𝜔2
𝜔0

𝜔1 + 𝐵2
2 ǁ𝑡 𝜔2

Standard Form

𝒇 𝑒𝑢𝑐𝑙 𝑡 =

𝐵0
2 ǁ𝑡 𝜔2𝒑0 + 𝐵1

2 ǁ𝑡
𝜔2
𝜔0

𝜔1𝒑1 + 𝐵2
2 ǁ𝑡 𝜔2𝒑2

𝐵0
2 ǁ𝑡 𝜔2 + 𝐵1

2 ǁ𝑡
𝜔2
𝜔0

𝜔1 + 𝐵2
2 ǁ𝑡 𝜔2

with 𝜔 ≔
1

𝜔0𝜔2
𝜔1

=
𝐵0

2 ǁ𝑡 𝒑0 + 𝐵1
2 ǁ𝑡

1
𝜔0𝜔2

𝜔1𝒑1 + 𝐵2
2 ǁ𝑡 𝒑2

𝐵0
2 ǁ𝑡 + 𝐵1

2 ǁ𝑡
1

𝜔0𝜔2
𝜔1 + 𝐵2

2 ǁ𝑡

=
𝐵0

2 ǁ𝑡 𝒑0 + 𝐵1
2 ǁ𝑡 𝜔𝒑1 + 𝐵2

2 ǁ𝑡 𝒑2

𝐵0
2 ǁ𝑡 + 𝐵1

2 ǁ𝑡 𝜔 + 𝐵2
2 ǁ𝑡

Standard Form

Consequence:
• It is sufficient to specify the weight of the inner point

• We can w.l.o.g. set 𝜔0 = 𝜔2 = 1, 𝜔1 = 𝜔

• This form of a quadratic Bézier curve is called the standard form or the
normal form

• Choices:
• 𝜔 < 1: ellipse segment

• 𝜔 = 1: parabola segment (non-rational curve)

• 𝜔 > 1: hyperbola segment

Illustration

• Changing the weight:

Conversion to Implicit Form

Convert parametric to implicit form
• In order to show the shape condition

• For distance computation / inside-outside tests

Express curve in barycentric coordinates
• Curve can be expressed in barycentric coordinates

(linear transform)

𝒇 𝑡 = 𝜏0 𝑡 𝒑0 + 𝜏1 𝑡 𝒑1 + 𝜏2 𝑡 𝒑2

Conversion to Implicit Form

Compare the coefficients

𝜏0 =
𝜔0 1−𝑡 2

𝜔 𝑡

𝜏1 =
2𝜔1𝑡 1−𝑡

𝜔 𝑡

𝜏2 =
𝜔2𝑡

2

𝜔 𝑡

𝒇 𝑡 = 𝜏0 𝑡 𝒑0 + 𝜏1 𝑡 𝒑1 + 𝜏2 𝑡 𝒑2

𝒇 𝒆𝒖𝒄𝒍 𝑡 =
1 − 𝑡 2𝜔0𝒑0 + 2𝑡 1 − 𝑡 𝜔1𝒑1 + 𝑡2𝜔2𝒑2

1 − 𝑡 2𝜔0 + 2𝑡 1 − 𝑡 𝜔1 + 𝑡2𝜔2

𝜔 𝑡 = 1 − 𝑡 2 𝜔0 + 2𝑡 1 − 𝑡 𝜔1 + 𝑡2𝜔2

Conversion to Implicit Form

Solving for 𝒕, 𝟏 − 𝒕

𝜏0 =
𝜔0 1−𝑡 2

𝜔 𝑡
⇒ 1 − 𝑡 =

𝜏0 𝑡 𝜔 𝑡

𝜔0

𝜏1 =
2𝜔1𝑡 1−𝑡

𝜔 𝑡

𝜏2 =
𝜔2𝑡

2

𝜔 𝑡
⇒ 𝑡 =

𝜏2 𝑡 𝜔 𝑡

𝜔2

Conversion to Implicit Form

Solving for 𝒕, 𝟏 − 𝒕

𝜏0 =
𝜔0 1−𝑡 2

𝜔 𝑡
⇒ 1 − 𝑡 =

𝜏0 𝑡 𝜔 𝑡

𝜔0

𝜏1 =
2𝜔1𝑡 1−𝑡

𝜔 𝑡

𝜏2 =
𝜔2𝑡

2

𝜔 𝑡
⇒ 𝑡 =

𝜏2 𝑡 𝜔 𝑡

𝜔2

𝜏1 =
2𝜔1𝑡 1−𝑡

𝜔 𝑡
= 2

𝜔1

𝜔 𝑡

𝜏0 𝑡 𝜔 𝑡

𝜔0

𝜏2 𝑡 𝜔 𝑡

𝜔2
= 2𝜔1

𝜏0 𝑡 𝜏2 𝑡

𝜔0𝜔2

⇒
𝜏1
2 𝑡

𝜏2 𝑡 𝜏0 𝑡
=

4𝜔1
2

𝜔0𝜔2

Conversion to Implicit Form

More algebra …

𝜏1
2 𝑡

𝜏2 𝑡 𝜏0 𝑡
=

4𝜔1
2

𝜔0𝜔2

Using 𝜏2 𝑡 = 1 − 𝜏0 𝑡 − 𝜏1 𝑡 , we get

𝜔0𝜔2 𝜏1
2 𝑡 = 4𝜔1

2𝜏2 𝑡 𝜏0 𝑡 = 4𝜔1
2 1 − 𝜏0 𝑡 − 𝜏1 𝑡 𝜏0 𝑡

= 4𝜔1
2 𝜏0 𝑡 − 𝜏0

2 𝑡 − 𝜏0 𝑡 𝜏1 𝑡

⇒ 𝜔0𝜔2 𝜏1
2 𝑡 + 4𝜔1

2𝜏1 𝑡 𝜏0 𝑡 + 4𝜔1
2𝜏0

2 𝑡 − 4𝜔1
2𝜏0 𝑡 = 0

𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑦2 + 0𝑥 + 𝑒𝑦 + 0 = 0

Conversion to Implicit Form

More algebra …

𝜏1
2 𝑡

𝜏2 𝑡 𝜏0 𝑡
=

4𝜔1
2

𝜔0𝜔2

Using 𝜏2 𝑡 = 1 − 𝜏0 𝑡 − 𝜏1 𝑡 , we get

𝜔0𝜔2 𝜏1
2 𝑡 = 4𝜔1

2𝜏2 𝑡 𝜏0 𝑡 = 4𝜔1
2 1 − 𝜏0 𝑡 − 𝜏1 𝑡 𝜏0 𝑡

= 4𝜔1
2 𝜏0 𝑡 − 𝜏0

2 𝑡 − 𝜏0 𝑡 𝜏1 𝑡

⇒ 𝜔0𝜔2 𝜏1
2 𝑡 + 4𝜔1

2𝜏1 𝑡 𝜏0 𝑡 + 4𝜔1
2𝜏0

2 𝑡 − 4𝜔1
2𝜏0 𝑡 = 0

Classification

Eigenvalue argument led to:
• Parabola requires 𝑏2 = 4𝑎𝑐 in 𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑦2 + 𝑑𝑥 + 𝑒𝑦 + 𝑓 = 0

• In our case:
𝜔0𝜔2 𝜏1

2 𝑡 + 4𝜔1
2𝜏1 𝑡 𝜏0 𝑡 + 4𝜔1

2𝜏0
2 𝑡 − 4𝜔1

2𝜏0 𝑡 = 0

i.e.

4 𝜔0𝜔2 4𝜔1
2 = 4𝜔1

2 2

⇔ 𝜔0𝜔2 = 𝜔1
2

• Standard form: 𝜔0 = 𝜔2 = 1

⇒ 𝜔1 = 1

Classification

Similarly, it follows that

𝜔1 < 1 → Ellipse

𝜔1 = 1 → Parabola

𝜔1 > 1 → Hyperbola

Towards Dual Conic Sections

Rational quadratic curves – conic sections
• Consider a rational quadratic curve in normal form for 𝑡 ∈ 0,1 :

𝒙 𝑡 =
1 − 𝑡 2 ⋅ 𝒃0 + 2 ⋅ 𝑡 ⋅ 1 − 𝑡 ⋅ 𝜔 ⋅ 𝒃1 + 𝑡2 ⋅ 𝒃2

1 − 𝑡 2 + 2 ⋅ 𝑡 ⋅ 1 − 𝑡 ⋅ 𝜔 + 𝑡2

Dual Conic Sections

Rational quadratic curves – conic sections
• Dual conic section 𝑡 ∈ ℝ ∖ [0,1]

• Choice of reparameterization

𝑠 𝑡 = Ƹ𝑡 =
𝑡

2 ⋅ 𝑡 − 1
⇒ 1 − Ƹ𝑡 =

𝑡 − 1

2 ⋅ 𝑡 − 1

Ƹ𝑡 changes from 0 to −∞ ⇔ 𝑡 changes from 0 to
1

2

Ƹ𝑡 changes from ∞ to 1 ⇔ 𝑡 changes from
1

2
 to 1

Dual Conic Sections

The following applies:

𝒙 𝑠 𝑡 = 𝒙 Ƹ𝑡

=
1 − Ƹ𝑡 2 ⋅ 𝑏0 + 2 ⋅ Ƹ𝑡 ⋅ 1 − Ƹ𝑡 ⋅ 𝜔 ⋅ 𝑏1 + Ƹ𝑡2 ⋅ 𝑏2

1 − Ƹ𝑡 2 + 2 ⋅ Ƹ𝑡 ⋅ 1 − Ƹ𝑡 ⋅ 𝜔 + Ƹ𝑡2

=
1 − 𝑡 2 ⋅ 𝑏0 − 2 ⋅ 𝑡 ⋅ 1 − 𝑡 ⋅ 𝜔 ⋅ 𝑏1 + 𝑡2 ⋅ 𝑏2

1 − 𝑡 2 − 2 ⋅ 𝑡 ⋅ 1 − 𝑡 ⋅ 𝜔 + 𝑡2

• →Dual conic section arises in Normal form by negation of 𝜔

Dual Conic Sections

Examples:

Dual Conic Sections

Classification of conic sections:
• By means of the dual conic section

• Consider singularities of the denominator function

1 − 𝑡 2 − 2 ⋅ 𝑡 ⋅ 1 − 𝑡 ⋅ 𝜔 + 𝑡2 in 0,1

Rational Bézier curves

• 𝜔 < 1 → no singularities → ellipse

• 𝜔 = 1 → one singularities → parabola

• 𝜔 > 1 → two singularities → hyperbola

Circle in Bézier Form

• Quadratic rational polynomial:

𝑓 𝑡 =
1

1 + 𝑡2
1 − 𝑡2

2𝑡
, 𝑡 = tan

𝜑

2
, 𝜑 ∈ −

𝜋

2
,
𝜋

2

• Conversion to Bézier basis

𝐵0
2
= 1 − 𝑡 2 = 1 − 2𝑡 + 𝑡2 ≔ 1 −2 1 T

𝐵1
2
= 2𝑡 1 − 𝑡 = 2𝑡 − 2𝑡2 ≔ 0 2 −2 T

𝐵2
2
= 𝑡2 ≔ 0 0 1 T

1 − 𝑡2 ≔ 1 0 −1 T

2𝑡 ≔ 0 2 0 T

1 + 𝑡2 ≔ 1 0 1 T

Circle in Bézier Form

Conversion to Bézier basis: Method 1
𝐵0

2
= 1 − 𝑡 2 = 1 − 2𝑡 + 𝑡2 ≔ 1 −2 1 T

𝐵1
2
= 2𝑡 1 − 𝑡 = 2𝑡 − 2𝑡2 ≔ 0 2 −2 T

𝐵2
2
= 𝑡2 ≔ 0 0 1 T

Comparison yields:

1 − 𝑡2 = 𝐵0
2
+ 𝐵1

2

2𝑡 = 𝐵1
2
+ 2𝐵2

2

1 + 𝑡2 = 𝐵0
2
+ 𝐵1

2
+ 2𝐵2

2

1 − 𝑡2 ≔ 1 0 −1 T

2𝑡 ≔ 0 2 0 T

1 + 𝑡2 ≔ 1 0 1 T

𝒇 ℎ𝑜𝑚 𝑡 =
1
0
1

𝐵0
2
+

1
1
1

𝐵1
2 +

0
2
2

𝐵2
2

Circle in Bézier Form

Conversion to Bézier basis: Method 2

Use polar forms:

And then evaluate at 0,0 , 0,1 , 1,1

1 − 𝑡2 ⇒ 𝑓0 = 1 − 𝑡1𝑡2

2𝑡 ⇒ 𝑓1 = 𝑡1 + 𝑡2

1 + 𝑡2 ⇒ 𝑓2 = 1 + 𝑡1𝑡2

Circle in Bézier Form

• Result:

𝒇 𝑡 =

1
0

𝐵0
2

𝑡 +
1
1

𝐵1
2

𝑡 +
0
2

𝐵2
2

𝑡

𝐵0
2

𝑡 + 𝐵1
2

𝑡 + 2𝐵2
2

𝑡

• Parameters:

𝑡 = tan
𝜑

2
⇒ 𝜑 = 2arctan 𝑡

𝑡 ∈ 0,1 → 𝜑 ∈ 0,
𝜋

2

Circle in Bézier Form

Standard Form:

𝒇 𝑡 =
𝐵0

2 ǁ𝑡 𝒑0 + 𝐵1
2 ǁ𝑡 𝜔𝒑1 + 𝐵2

2 ǁ𝑡 𝒑2

𝐵0
2 ǁ𝑡 + 𝐵1

2 ǁ𝑡 𝜔 + 𝐵2
2 ǁ𝑡

 with 𝜔 ≔
1

𝜔0𝜔2
𝜔1

𝒇 𝑡 =
𝐵0

2 1
0

+
2
2 𝐵1

2 1
1

+ 𝐵2
2 0

1

𝐵0
2
+

2
2
𝐵1

2
+ 𝐵2

2

Result: Circle in Bézier Form

Final Result: 𝑝1 =
1
1

𝜔1 =
2

2

𝑝0 =
1
0

𝜔1 = 1

𝑝2 =
0
1

𝜔2 = 1

General Circle Segments

Circlar arcs:
• Let dist 𝒃0, 𝒃1 = dist 𝒃1, 𝒃2

and 𝛼 = angle 𝒃0, 𝒃2, 𝒃1 = angle 𝒃2, 𝒃0, 𝒃1
• Then, 𝒙 𝑡 is the circular arc for

𝜔 = cos 𝛼

• 𝒙 𝑡 is not arc length parameterized!

Properties, Remarks

Continuity:
• The parameterization is only 𝐶1, but 𝐺∞

• No arc length parameterization possible

• Even stronger: No rational curve other than a straight line can have arc-
length parameterization.

Circles in general degree Bézier splines:
• Simplest solution:

• Form quadratic circle (segments)

• Apply degree elevation to obtain the desired degree

Farin Points

ഥ𝑓𝑖 =
1

2
⋅ ഥ𝑏𝑖 + 𝑏𝑖+1

𝑓𝑖 =
𝜔𝑖 ⋅ 𝑏𝑖 +𝜔𝑖+1 ⋅ 𝑏𝑖+1

𝜔𝑖 + 𝜔𝑖+1

Farin Points

Not the weights themselves determine the curve shape, but the
relation of the weights among each other!

The ratio
𝜔𝑖+1

𝜔𝑖
 is expressed by point 𝑓𝑖 , at line segment 𝑏𝑖 → 𝑏𝑖+1 of

the Bézier polygon. The following applies:
𝜔𝑖+1

𝜔𝑖
=

𝑏𝑖 − 𝑓𝑖
𝑏𝑖+1 − 𝑓𝑖

Farin Points

Alternative technique to specify weights:
• Farin points or Weight points
• User interface: More intuitive in interactive design

Farin Points:

𝑞0 =
𝜔0𝑝0+𝜔1𝑝1

𝜔0+𝜔1
, 𝑞1 =

𝜔1𝑝1+𝜔2𝑝2

𝜔1+𝜔2

Standard Form

𝑞0 =
𝑝0+𝜔1𝑝1

1+𝜔1
, 𝑞1 =

𝑝1+𝜔1𝑝2

1+𝜔1

Farin Points

Farin Points and changing of weight:
• The change of the weight 𝜔𝑖 into ෝ𝜔𝑖 under preservation of the other

weights only changes the Farin points 𝑓𝑖−1, 𝑓𝑖 to መ𝑓𝑖−1, ෡𝑓𝑖

Rational Curves: Rational Bézier Curves

Properties of rational Bézier curves:
• (Let 𝜔𝑖 > 0 for 𝑖 = 0,… , 𝑛)

• End point interpolation

• Tangent direction in the boundary points corresponds with the direction
of the control polygon

• Variation diminishing property

Rational Curves: Rational Bézier Curves

Convex hull properties:

Tightened convex hull properties: the curve lies in the convex hull
of 𝑏0, 𝑓0, … , 𝑓𝑛−1, 𝑏𝑛

Derivatives

Computing derivatives of rational Bézier curves:
• Straightforward: Apply quotient rule

• A simpler expression can be derived using an algebraic trick:

𝒇 𝑡 =
σ𝑖=0
𝑛 𝐵𝑖

𝑑
𝑡 𝜔𝑖𝒑𝑖

σ𝑖=0
𝑛 𝐵𝑖

𝑑
𝑡 𝜔𝒊

=:
𝒑 𝑡

𝜔 𝑡

𝒇 𝑡 =
𝒑 𝑡

𝜔 𝑡
⇒ 𝒑 𝑡 = 𝒇 𝑡 𝜔 𝑡 ⇒ 𝒑′ 𝑡 = 𝒇′ 𝑡 𝜔 𝑡 + 𝒇 𝑡 𝜔′ 𝑡

⇒ 𝒇′ 𝑡 𝜔 𝑡 = 𝒑′ 𝑡 − 𝒇 𝑡 𝜔′ 𝑡 ⇒ 𝒇′ 𝑡 =
𝒑′ 𝑡 − 𝒇 𝑡 𝜔′ 𝑡

𝜔 𝑡

Derivatives

At the end points:

𝒇′ 𝑡 =
𝒑′ 𝑡 − 𝜔′ 𝑡 𝒇 𝑡

𝜔 𝑡

𝒇′ 0 =
𝒑′ 0 − 𝜔′ 0 𝒇 0

𝜔 0

𝒇′ 1 = 𝑑
𝜔𝑑−1

𝜔𝑑
𝒑𝑑 − 𝒑𝑑−1

=
𝑑 𝜔1𝒑1 −𝜔0𝒑0 − 𝑑 𝜔1 − 𝜔0 𝒑0

𝜔0
=

𝑑

𝜔0
𝜔1𝒑1 −𝜔0𝒑0 −𝜔1𝒑0 + 𝜔0𝒑0

= 𝑑
𝜔1

𝜔0
𝒑1 − 𝒑0

NURBS
Non-Uniform Rational B-Splines

NURBS

NURBS: Rational B-Splines
• Same idea:

• Control points in homogenous coordinates

• Evaluate curve in (𝑑 + 1)-dimensional space

(same as before)

• For display, divide by 𝜔-component

- (we can divide anytime)

NURBS

NURBS: Rational B-Splines

• Formally:(𝑁𝑖
𝑑 :B-spline basis function 𝑖 of degree d)

𝒇 𝑡 =
σ𝑖=1
𝑛 𝑁𝑖

𝑑
𝑡 𝜔𝑖𝒑𝑖

σ𝑖=1
𝑛 𝑁𝑖

𝑑
𝑡 𝜔𝒊

• Knot sequences etc. all remain the same

• de Boor algorithm – similar to rational de Casteljau alg.
• option 1. – apply separately to numerator, denominator

• option 2. – normalize weights in each intermediate result

- the second option is numerically more stable

Spline Surfaces
Tensor Product Surfaces · Total Degree Surfaces

陈仁杰
renjiec@ustc.edu.cn

http://staff.ustc.edu.cn/~renjiec

Computer Aided Geometric Design
Fall Semester 2024

mailto:renjiec@ustc.edu.cn
http://staff.ustc.edu.cn/~renjiec

Output: 1D Output: 2D Output: 3D

In
p

u
t:

 1
D

Function graph Plane curve Space curve

In
p

u
t:

 2
D

Plane warp Surface

In
p

u
t:

 3
D

Space warp

Spline Surfaces

Parametric spline surfaces:
• Two parameter coordinates 𝑢, 𝑣

• Piecewise bivariate polynomials

(rational surfaces → homogeneous coords)

• Assemble multiple pieces to form a surface with
continuity

• Each piece is called spline patch

Spline Surfaces

Two different approaches
• Tensor product surfaces

• Simple construction

• Everything carries over from curve case

• Quad patches

• Degree anisotropy

• Total degree surfaces
• Not as straightforward

(blossoming will help)

• Isotropic degree

• Triangle patches

• “natural” generalization of curves

Tensor Product Surfaces

Tensor Product Surfaces

Simple Idea
• Given a basis for a one dimensional function space on the interval
𝑡 ∈ 𝑡0, 𝑡1 → ℝ𝑑 :

𝑩 𝑐𝑢𝑟𝑣 ≔ 𝑏1 𝑡 , … , 𝑏𝑛 𝑡

• Build a new basis with two parameters by taking all possible
products:

𝑩 𝑠𝑢𝑟𝑓 ≔ 𝑏1 𝑢 𝑏1 𝑣 , 𝑏1 𝑢 𝑏2 𝑣 ,… , 𝑏𝑛 𝑢 𝑏𝑛 𝑣

Tensor Product Surfaces

Tensor product basis

𝑏1 𝑢 𝑏2 𝑢 𝑏3 𝑢 𝑏4 𝑢

𝑏1 𝑣 𝑏1 𝑣 𝑏1 𝑢 𝑏1 𝑣 𝑏2 𝑢 𝑏1 𝑣 𝑏3 𝑢 𝑏1 𝑣 𝑏4 𝑢

𝑏2 𝑣 𝑏2 𝑣 𝑏1 𝑢 𝑏2 𝑣 𝑏2 𝑢 𝑏2 𝑣 𝑏3 𝑢 𝑏2 𝑣 𝑏4 𝑢

𝑏3 𝑣 𝑏3 𝑣 𝑏1 𝑢 𝑏3 𝑣 𝑏2 𝑢 𝑏3 𝑣 𝑏3 𝑢 𝑏3 𝑣 𝑏4 𝑢

𝑏4 𝑣 𝑏4 𝑣 𝑏1 𝑢 𝑏4 𝑣 𝑏2 𝑢 𝑏4 𝑣 𝑏3 𝑢 𝑏4 𝑣 𝑏4 𝑢

Monomial Example

Tensor product basis of cubic monomials

1 𝑢 𝑢2 𝑢3

1 1 𝑢 𝑢2 𝑢3

𝑣 𝑣 𝑣𝑢 𝑣𝑢2 𝑣𝑢3

𝑣2 𝑣2 𝑣2𝑢 𝑣2𝑢2 𝑣2𝑢3

𝑣3 𝑣3 𝑣3𝑢 𝑣3𝑢2 𝑣3𝑢3

Example

Tensor Product Surfaces

Tensor Product Surfaces

𝒇 𝑢, 𝑣 =෍
𝑖=1

𝑛

෍
𝑗=1

𝑛

𝑏𝑖 𝑢 𝑏𝑗 𝑣 𝒑𝑖,𝑗

• “Curves of Curves”

• Order does not matter

=෍
𝑖=1

𝑛

𝑏𝑖 𝑢 ෍
𝑗=1

𝑛

𝑏𝑗 𝑣 𝒑𝑖,𝑗

=෍
𝑗=1

𝑛

𝑏𝑗 𝑣 ෍
𝑖=1

𝑛

𝑏𝑖 𝑢 𝒑𝑖,𝑗

Properties

Properties of tensor product surfaces:
• Linear invariance: Obvious

• Affine invariance?
• Needs partition of unity property

• Assume basis 𝐵 𝑐𝑢𝑟𝑣 ≔ 𝑏1 𝑡 , … , 𝑏𝑛 𝑡 forms a partition of unity, i.e.:

• Then we get:

• Affine invariance for tensor product surfaces is induced by the
corresponding property of the employed curve basis

෍
𝑖=1

𝑛

෍
𝑗=1

𝑛

𝑏𝑖 𝑢 𝑏𝑗 𝑣 =෍
𝑖=1

𝑛

𝑏𝑖 𝑢 ෍
𝑗=1

𝑛

𝑏𝑗 𝑣 =෍
𝑗=1

𝑛

𝑏𝑗 𝑣 ⋅ 1 = 1

෍

𝑖=1

𝑛

𝑏𝑖 𝑣 = 1

Properties

Properties of tensor product surfaces:
• Convex Hull?

• Assume basis 𝑩 𝑐𝑢𝑟𝑣 ≔ 𝑏1 𝑡 , … , 𝑏𝑛 𝑡 forms a partition of unity and it is
nonnegative (≥ 0) on 𝑡 ∈ 𝑡0, 𝑡1

• Obviously, we then have:

෍
𝑖=1

𝑛

෍
𝑗=1

𝑛

𝑏𝑖 𝑢 𝑏𝑗 𝑣 ≥ 0

• So we have the convex hull property on 𝑡0, 𝑡1
2

• The convex hull property for tensor product surface is induced by the
property of the employed curve basis

≥ 0 ≥ 0

Partial Derivatives

Computing partial derivatives:
• First derivatives:
𝜕

𝜕𝑢
෍

𝑖=1

𝑛

෍
𝑗=1

𝑛

𝑏𝑖 𝑢 𝑏𝑗 𝑣 𝒑𝑖,𝑗 =෍
𝑗=1

𝑛

𝑏𝑗 𝑣 ෍
𝑖=1

𝑛 𝑑

𝑑𝑢
𝑏𝑖 𝑢 𝒑𝑖,𝑗

𝜕

𝜕𝑣
෍

𝑖=1

𝑛

෍
𝑗=1

𝑛

𝑏𝑖 𝑢 𝑏𝑗 𝑣 𝒑𝑖,𝑗 =෍
𝑖=1

𝑛

𝑏𝑖 𝑢 ෍
𝑗=1

𝑛 𝑑

𝑑𝑣
𝑏𝑗 𝑣 𝒑𝑖,𝑗

• Just spline-curve combinations of curve derivatives

Partial Derivatives

Computing partial derivatives:
• Second derivatives:
𝜕

𝜕𝑢2
෍

𝑖=1

𝑛

෍
𝑗=1

𝑛

𝑏𝑖 𝑢 𝑏𝑗 𝑣 𝒑𝑖,𝑗 =෍
𝑗=1

𝑛

𝑏𝑗 𝑣 ෍
𝑖=1

𝑛 𝑑2

𝑑𝑢2
𝑏𝑖 𝑢 𝒑𝑖,𝑗

𝜕2

𝜕𝑢𝜕𝑣
෍

𝑖=1

𝑛

෍
𝑗=1

𝑛

𝑏𝑖 𝑢 𝑏𝑗 𝑣 𝒑𝑖,𝑗 =
𝜕

𝜕𝑣
෍

𝑗=1

𝑛

𝑏𝑗 𝑣 ෍
𝑖=1

𝑛 𝑑

𝑑𝑢
𝑏𝑖 𝑢 𝒑𝑖,𝑗

=෍
𝑗=1

𝑛 𝑑

𝑑𝑣
𝑏𝑗 𝑣 ෍

𝑖=1

𝑛 𝑑

𝑑𝑢
𝑏𝑖 𝑢 𝒑𝑖,𝑗

Partial Derivatives

Computing partial derivatives:
• General derivatives:

𝜕𝑟+𝑠

𝜕𝑢𝑟𝜕𝑣𝑠
෍

𝑖=1

𝑛

෍
𝑗=1

𝑛

𝑏𝑖 𝑢 𝑏𝑗 𝑣 𝒑𝑖,𝑗 =෍
𝑗=1

𝑛 𝑑𝑠

𝑑𝑣𝑠
𝑏𝑖 𝑣 ෍

𝑖=1

𝑛 𝑑𝑟

𝑑𝑢𝑟
𝑏𝑖 𝑢 𝒑𝑖,𝑗

=෍
𝑖=1

𝑛 𝑑𝑟

𝑑𝑢𝑟
𝑏𝑖 𝑢 ෍

𝑗=1

𝑛 𝑑𝑠

𝑑𝑣𝑠
𝑏𝑗 𝑣 𝒑𝑖,𝑗

Normal Vectors

We can compute normal vectors from partial derivatives:

𝒏 𝑢, 𝑣 =
σ𝑗=1
𝑛 𝑏𝑗 𝑣 σ𝑖=1

𝑛 𝑑
𝑑𝑢

𝑏𝑖 𝑢 𝒑𝑖,𝑗 × σ𝑗=1
𝑛 𝑑

𝑑𝑣
𝑏𝑗 𝑣 σ𝑖=1

𝑛 𝑏𝑖 𝑢 𝒑𝑖,𝑗

σ𝑗=1
𝑛 𝑏𝑗 𝑣 σ𝑖=1

𝑛 𝑑
𝑑𝑢

𝑏𝑖 𝑢 𝒑𝑖,𝑗 × σ𝑗=1
𝑛 𝑑

𝑑𝑣
𝑏𝑗 𝑣 σ𝑖=1

𝑛 𝑏𝑖 𝑢 𝒑𝑖,𝑗

• Problem: degenerate cases
• Collinear tangents

• Irregular parametrization

• Need extra code to handle special cases

Tensor Product Surfaces
Tensor Product Bézier Surfaces

Tensor Product Bézier Spline Surfaces

Tensor Product Bézier Surfaces

Bézier curves:
repeated linear interpolation

bilinear interpolation:
repeated linear interpolation

repeated bilinear interpolation:
Gives us tensor product Bézier surfaces
(example) shows quadratic Bézier Surfaces)

now a different setup:
4 points 𝒃00, 𝒃10, 𝒃11, 𝒃01
Parameter area 0,1 × 0,1

Some formulas for this setup

𝒉0 = 1 − 𝑢 𝒃00 + 𝑢𝒃10

𝒉1 = 1 − 𝑢 𝒃01 + 𝑢𝒃11

𝒙 𝑢, 𝑣 = 1 − 𝑣 𝒉0 + 𝑣𝒉1

𝒙 𝑢, 𝑣 = 1 − 𝑢 1 − 𝑣 𝒃00 + 𝑢 1 − 𝑣 𝒃10 + 1 − 𝑢 𝑣𝒃01 + 𝑢𝑣𝒃11

= 1 − 𝑣 1 − 𝑢 𝒃00 + 𝑢𝒃10 + 𝑣 1 − 𝑢 𝒃01 + 𝑢𝒃11

Some formulas for this setup

Derivatives of bilinear surfaces

• 𝒙𝑢 𝑢, 𝑣 = 1 − 𝑣 𝒃10 − 𝒃00 + 𝑣 𝒃11 − 𝒃01

• 𝒙𝑣 𝑢, 𝑣 = 1 − 𝑢 𝒃01 − 𝒃00 + 𝑢 𝒃11 − 𝒃10

• 𝒙𝑢𝑢 𝑢, 𝑣 = 𝒙𝑣𝑣 𝑢, 𝑣 = 0

• 𝒙𝑢𝑣 𝑢, 𝑣 = 𝒃00 − 𝒃10 − 𝒃01 + 𝒃11

Some formulas for this setup

Biquadratic surfaces

𝒃00
1 = 1 − 𝑢 1 − 𝑣 𝒃00 + 𝑢 1 − 𝑣 𝒃10+ 1 − 𝑢 𝑣𝒃01+𝑢𝑣𝒃11

𝒃10
1 = 1 − 𝑢 1 − 𝑣 𝒃10 + 𝑢 1 − 𝑣 𝒃20+ 1 − 𝑢 𝑣𝒃11+𝑢𝑣𝒃21

𝒃01
1 = 1 − 𝑢 1 − 𝑣 𝒃01 + 𝑢 1 − 𝑣 𝒃11+ 1 − 𝑢 𝑣𝒃02+𝑢𝑣𝒃12

𝒃11
1 = 1 − 𝑢 1 − 𝑣 𝒃11 + 𝑢 1 − 𝑣 𝒃21+ 1 − 𝑢 𝑣𝒃12+𝑢𝑣𝒃22

𝒙 𝑢, 𝑣
= 1 − 𝑢 1 − 𝑣 𝒃00

1 + 𝑢 1 − 𝑣 𝒃10
1 + 1 − 𝑢 𝑣𝒃01

1 + 𝑢𝑣𝒃11
1

=෍
𝑖=𝟎

𝟐

෍
𝑗=𝟎

𝟐

𝐵𝑖
2 𝑢 𝐵𝑗

2 𝑣 𝒃𝑖,𝑗

Bézier Patches

Bézier Patches:
• Use tensor product Bernstein basis

𝒇 𝑢, 𝑣 =෍
𝑖=𝟎

𝒅

෍
𝑗=𝟎

𝒅

𝐵𝑖
𝑑

𝑢 𝐵𝑗
𝑑

𝑣 𝒑𝑖,𝑗

• We get automatically:
• Affine invariance

• Convex hull property

Bézier Patches

Bézier Patches:
• Remember endpoint interpolation:

• Boundary curves are Bézier curves of the
boundary control points

Bézier Patches

Bézier Patches:
• Tangent vectors:

• First derivatives at boundary points are proportional to differences of control points:

𝜕

𝜕𝑢
𝒇 𝑢, 𝑣 ቚ

𝑢=0
=෍

𝑖=𝟎

𝒅

෍
𝑗=𝟎

𝒅

𝐵𝑖
𝑑

𝑣 𝐵′𝑗
𝑑

0 𝒑𝑖,𝑗

𝜕

𝜕𝑢
𝒇 𝑢, 𝑣 ቚ

𝑢=1
= 𝑑෍

𝑗=𝟎

𝒅

𝐵𝑗
𝑑

𝑣 𝒑𝑑,𝑗 − 𝒑𝑑−1,𝑗

= 𝑑෍
𝑗=𝟎

𝒅

𝐵𝑗
𝑑

𝑣 𝒑1,𝑗 − 𝒑0,𝑗

Continuity Conditions

For 𝑪𝟎 continuity:
• Boundary control points must match

For 𝑪𝟏 continuity:
• Difference vectors must match at the boundary

C𝟎 Continuity

C𝟏 Continuity

C𝟏 Continuity

Polars & Blossoms

Blossoms for tensor product surfaces:
• Polar form of a polynomial tensor product surfaces of degree 𝑑:

𝐹: ℝ × ℝ → ℝ𝑛 𝐹 𝑢, 𝑣
𝒇: ℝ𝑑 × ℝ𝑑 → ℝ𝑛 𝒇 𝑢1, … , 𝑢𝑑; 𝑣1, … , 𝑣𝑑

• Required properties:
• Diagonality: 𝒇 𝑢,… , 𝑢; 𝑣, … , 𝑣 = 𝐹 𝑢, 𝑣

• Symmetry: 𝒇 𝑢1, … , 𝑢𝑑; 𝑣1, … , 𝑣𝑑 = 𝑓 𝑢𝜋 1 , … , 𝑢𝜋 𝑑 ; 𝑣𝜇 1 , … , 𝑣𝜇 𝑑
for all permutations of indices 𝜋, 𝜇

• Multi-affine: σ𝛼𝑘 = 1

⇒ 𝒇 𝑢1, … , σ𝛼𝑘𝑢𝑖
𝑘
, … , 𝑢𝑑; 𝑣1, … , 𝑣𝑑

= 𝛼1𝒇 𝑢1, … , 𝑢𝑖
1
, … , 𝑢𝑑; 𝑣1, … , 𝑣𝑑 +⋯+ 𝛼𝑛𝒇 𝑢1, … , 𝑢𝑖

𝑛
, … , 𝑢𝑑; 𝑣1, … , 𝑣𝑑

and 𝒇 𝑢1, … , 𝑢𝑑; 𝑣1, … , σ𝛼𝑘𝑣𝑖
𝑘
, … , , 𝑣𝑑

= 𝛼1𝒇 𝑢1, … , 𝑢𝑑; 𝑣1, … , 𝑣𝑖
1
, … , 𝑣𝑑 +⋯+ 𝛼𝑛𝒇 𝑢1, … , 𝑢𝑑; 𝑣1, … , 𝑣𝑖

𝑛
, … , 𝑣𝑑

Short Summary

Polar forms for tensor product surfaces:
• Polar separately in 𝑢 and 𝑣

• Notation: 𝒇 𝑢1, … , 𝑢𝑑; 𝑣1, … , 𝑣𝑑

• Can be used to derive properties/algorithms similar to the curve case

𝑢-parameters 𝑣-parameters

Bézier Control Points

Bézier control points in blossom notation:

de Casteljau Algorithm

de Casteljau algorithm for tensor product surfaces

b(1,1,1; 1,1,1)

b(0,0,0; 1,1,1)

Tensor Product Surfaces
Tensor Product B-Spline Surfaces

B-Spline Patches

B-Spline Patches
• More general than Bézier patches

(we get Bézier patches as a special case)

• First, we fix a degree 𝑑

• Then, we need knot sequences in 𝑢 and 𝑣 direction:

𝑢1, … , 𝑢𝑛 , 𝑣1, … , 𝑣𝑚
• And a corresponding array of control points

𝑑0,0 … 𝑑𝑛−𝑑+1,0
… …

𝑑0,𝑚−𝑑+1 … 𝑑𝑛−𝑑+1,𝑚−𝑑+1

B-Spline Patches

Then, obtain a parametric B-spline patch as:

𝒇 𝑢, 𝑣 =෍
𝑖=𝟎

𝒅

෍
𝑗=𝟎

𝒅

𝑁𝑖
𝑑

𝑢 𝑁𝑗
𝑑

𝑣 𝒑𝑖,𝑗

• We can evaluate the patches using the de Boor Algorithm:
• “Curves of curves” idea

• Determine the knots/control points influencing 𝑢, 𝑣 ,

These will be no more than 𝑑 + 1 × 𝑑 + 1 points

• Compute 𝑑 + 1 𝑣-direction control points along 𝑢-direction,

Performing 𝑑 + 1 curve evaluations

• Then evaluate the curve in 𝑣-direction

• (or the other way around, interchanging 𝑢, 𝑣-directions)

Illustration

B-Spline Patches

Alternative:
• 2D de Boor algorithm

• Works similar to the 2D de Casteljau algorithm but with different weights

(we can use tensor–product blossoming to derive the weights)

Tensor Product Surfaces
Rational Patches

Rational Patches

Rational Patches
• We can use rational Bézier/B-splines to create the patches

(“rational Bézier patches” / “NURBS-patches”)

• Idea:
• Form a parametric surface in 4D, homogenous space

• Then project to 𝜔 = 1 to obtain the surface in Euclidian 3D space

• In short: Just use homogeneous coordinates everywhere

Rational Patch

Rational Bézier Patch:

𝒇 ℎ𝑜𝑚 𝑢, 𝑣 =෍
𝑖=0

𝑑

෍
𝑗=0

𝑑

𝐵𝑖
𝑑

𝑢 𝐵𝑗
𝑑

𝑣
𝜔𝑖,𝑗𝒑𝑖,𝑗
𝜔𝑖,𝑗

𝒇 𝐸𝑢𝑐𝑙 𝑢, 𝑣 =
σ𝑖=0
𝑑 σ𝑗=0

𝑑 𝐵𝑖
𝑑

𝑢 𝐵𝑗
𝑑

𝑣 𝜔𝑖,𝑗𝒑𝑖,𝑗

σ𝑖=0
𝑑 σ𝑗=0

𝑑 𝐵𝑖
𝑑

𝑢 𝐵𝑗
𝑑

𝑣 𝜔𝑖,𝑗

Rational Patch

Rational B-Spline Patch:

𝒇 ℎ𝑜𝑚 𝑢, 𝑣 =෍
𝑖=0

𝑑

෍
𝑗=0

𝑑

𝑁𝑖
𝑑

𝑢 𝑁𝑗
𝑑

𝑣
𝜔𝑖,𝑗𝒑𝑖,𝑗
𝜔𝑖,𝑗

𝒇 𝐸𝑢𝑐𝑙 𝑢, 𝑣 =
σ𝑖=0
𝑑 σ𝑗=0

𝑑 𝑁𝑖
𝑑

𝑢 𝑁𝑗
𝑑

𝑣 𝜔𝑖,𝑗𝒑𝑖,𝑗

σ𝑖=0
𝑑 σ𝑗=0

𝑑 𝑁𝑖
𝑑

𝑢 𝑁𝑗
𝑑

𝑣 𝜔𝑖,𝑗

Remark: Rational Patches

Observation:
• Euclidian surface is not a tensor

product surface
• Denominator depends on both 𝑢 and 𝑣

• Homogeneous space: 4D surface is a
tensor product surface.

𝒇 𝐸𝑢𝑐𝑙 𝑢, 𝑣 =
σ𝑖=0
𝑑 σ𝑗=0

𝑑 𝑁𝑖
𝑑

𝑢 𝑁𝑗
𝑑

𝑣 𝜔𝑖,𝑗𝒑𝑖,𝑗

σ𝑖=0
𝑑 σ𝑗=0

𝑑 𝑁𝑖
𝑑

𝑢 𝑁𝑗
𝑑

𝑣 𝜔𝑖,𝑗

𝒇 𝐸𝑢𝑐𝑙 𝑢, 𝑣 =
σ𝑖=0
𝑑 σ𝑗=0

𝑑 𝐵𝑖
𝑑

𝑢 𝐵𝑗
𝑑

𝑣 𝜔𝑖,𝑗𝒑𝑖,𝑗

σ𝑖=0
𝑑 σ𝑗=0

𝑑 𝐵𝑖
𝑑

𝑢 𝐵𝑗
𝑑

𝑣 𝜔𝑖,𝑗

Surfaces of Revolution

Advantages of rational patches:
• Rational patches can represent surfaces of revolution exactly.

• Examples:
• Cylinders

• Cones

• Spheres

• Ellipsoids

• Tori

• Question: given a cross section curve, how do we get the control points
for the 3D surface?

Surfaces of Revolution

Surfaces of Revolution

Given:
• Control points 𝑝1, … , 𝑝𝑛 of curve

(“generatrix”)

We want to compute:
• Control points 𝑝𝑖,𝑗 of a rational surface

Such that:
• The surface describes the surface of revolution that we

obtain by rotating the curve around the 𝑦 axis (w.l.o.g.)

Surfaces of Revolution

Simplification:
• We look only at a single rational Bézier segment

• Applying the scheme to multiple segments
together is straightforward

• The same idea also works for B-splines

Surfaces of Revolution

Construction:
• We are given control points

𝒑1, … , 𝒑𝑑+1

(𝑑 is the degree in 𝑢 direction)

• We introduce a new parameter 𝑣

• In 𝑣 direction, we use quadratic Bézier curves
(2nd degree basis in 𝑣-direction)

Surfaces of Revolution

Key Idea:
• For 𝑢-direction curves: control points (and thus the

curves) must move on circles around the 𝑦-axis

• Circles must have the same parametrization (this is easy)

• This means, the control points rotate around the y-axis

• Affine invariance will make the whole curve rotate, we
get the desired surface of revolution

Surface of Revolution

Making one point rotate around the y-axis:

Surface of Revolution

Making one point rotate around the y-axis:

Surface of Revolution

Making one point rotate around the y-axis: 𝒊 ≔
1
0
0

, 𝒌 ≔
0
0
1𝜔𝑖 𝒑𝑖 − 𝑟𝒊 + 𝑟𝒌

𝜔𝑖

𝜔𝑖 𝒑𝑖 − 2𝑟𝒊
𝜔𝑖

𝜔𝑖 𝑝𝑖 − 𝑟𝒊 − 𝑟𝒌
𝜔𝑖

Surface of Revolution

Making one point rotate around the y-axis: 𝒊 ≔
1
0
0

, 𝒌 ≔
0
0
1𝜔𝑖 𝒑𝑖 − 𝑟𝒊 + 𝑟𝒌

𝜔𝑖

𝜔𝑖 𝒑𝑖 − 2𝑟𝒊
𝜔𝑖

𝜔𝑖 𝑝𝑖 − 𝑟𝒊 − 𝑟𝒌
𝜔𝑖

Τ𝜔𝑖 𝒑𝑖 + 𝑟𝒌 2

Τ𝜔𝑖 2

Τ𝜔𝑖 𝒑𝑖 − 2𝑟𝒊 + 𝑟𝒌 2

Τ𝜔𝑖 2

Τ𝜔𝑖 𝒑𝑖 − 2𝑟𝒊 − 𝑟𝒌 2

Τ𝜔𝑖 2

Τ𝜔𝑖 𝒑𝑖 − 𝑟𝒌 2

Τ𝜔𝑖 2

Remark

What we get:
• We obtain 4 segments, i.e. 4 patches for each Bézier segment

• A similar construction with 3 segments exists as well

Does the scheme yield a circle for weights ≠ 𝟏 in the generatrix
curve?

• Common factors in weights cancel out

• Therefore, we still obtain a circle at these points

• Parametrization does not change either

Benefit

With this construction, it is straightforward to create:
• Spheres

• Tori

• Cylinders

• Cones

And affine transformations of these (e.g. ellipsoids)

Parametrization Restrictions

Remaining problem:
• The sphere and the cone are not regularly

parametrized (double control points)

• Might cause trouble (normal computation,
tessellation)

• In general: no sphere, or 𝑛-tori (𝑛 > 1) can be
parametrized without degeneracies

• What works: open surfaces, cylinders, tori

Curves on Surfaces, trimmed NURBS

Quad patch problem:
• All of our shapes are parameterized over rectangular regions

• General boundary curves are hard to create

• Topology fixed to a disc (or cylinder, torus)

• No holes in the middle

• Assembling complicated shapes is painful
• Lots of pieces

• Continuity conditions for assembling pieces become complicated

• Cannot use 𝐶2 B-splines continuity along boundaries when using multiple pieces

Curves on Surfaces, trimmed NURBS

Consequence:
• We need more control over the parameter domain
• One solution is trimming using curves on surfaces (CONS)
• Standard tool in CAD: trimmed NURBS

Basic idea:
• Specify a curve in the parameter domain that encapsulates one (or more)

pieces of area
• Tessellate the parameter domain accordingly to cut out the trimmed

piece (rendering)

Curves-on-Surfaces (CONS)

Curves-on-Surfaces (CONS)

Curves-on-Surfaces (CONS)

General Shapes

General shapes with holes:
• Draw multiple curves

• Inside / outside test:
• If any ray in the parameter domain intersects the boundary

curves an odd number of times, the point is inside

• Outside otherwise

• Implementation needs to take care of special cases (critical
points with respect to normal of the ray)

• Nasty, but doable

Total Degree Surfaces

Bézier Triangles

Alternative surface definition: Bézier triangles
• Constructed according to given total degree

• Completely symmetric: degree anisotropy

• Can be derived using a triangular de Casteljau algorithm
• Blossoming formalism is very helpful for defining Bézier

Triangles

• Barycentric interpolation of blossom values

Blossoms for Total Degree Surfaces

Blossom with points as arguments:
• Polar form degree 𝑑 with points as input and output:

𝑭:ℝ𝑛 → ℝ𝑚

𝒇:ℝ𝑑×𝑛 → ℝ𝑚

• Required Properties:
• Diagonality: 𝒇 𝒕, 𝒕, … , 𝒕 = 𝑭 𝒕

• Symmetry: 𝒇 𝒕1, 𝒕2, … , 𝒕𝑑 = 𝒇 𝒕𝜋 1 , 𝒕𝜋 2 , … , 𝒕𝜋 𝑑

for all permutations of indices 𝜋

• Multi-affine: σ𝛼𝑘 = 1

⇒ 𝒇 𝒕1, … , σ𝛼𝑘𝒕𝑖
𝑘
, … , 𝒕𝑑

= 𝛼1𝒇 𝒕1, … , 𝒕𝑖
1
, … , 𝒕𝑑 +⋯+ 𝛼𝑛𝒇 𝒕1, … , 𝒕𝑖

𝑛
, … , 𝒕𝑑

points as arguments

Example

Example: bivariate monomial basis
• In powers of 𝑢, 𝑣 :

𝐵 = 1, 𝑢, 𝑣, 𝑢2, 𝑢𝑣, 𝑣2

• Blossom form: multilinear in 𝑢1, 𝑢2, 𝑣1, 𝑣2
𝐵 = ሼ1,

1

2
𝑢1 + 𝑢2 ,

1

2
𝑣1 + 𝑣2 ,

ቅ𝑢1𝑢2,
1

4
𝑢1𝑣1 + 𝑢1𝑣2 + 𝑢2𝑣1 + 𝑢2𝑣2 , 𝑣1𝑣2

Barycentric Coordinates

Barycentric Coordinates:

• Planar case:

Barycentric combinations of 3 points

𝒑 = 𝛼𝒑1 + 𝛽𝒑2 + 𝛾𝒑3, with 𝛼 + 𝛽 + 𝛾 = 1

𝛾 = 1 − 𝛼 − 𝛽

• Area formulation

𝛾 = 1 − 𝛼 − 𝛽

𝛼 =
𝑎𝑟𝑒𝑎 Δ 𝒑2,𝒑3,𝒑

𝑎𝑟𝑒𝑎 Δ 𝒑1,𝒑2,𝒑3
, 𝛽 =

𝑎𝑟𝑒𝑎 Δ 𝒑1,𝒑3,𝒑

𝑎𝑟𝑒𝑎 Δ 𝒑1,𝒑2,𝒑3
, 𝛾 =

𝑎𝑟𝑒𝑎 Δ 𝒑1,𝒑2,𝒑

𝑎𝑟𝑒𝑎 Δ 𝒑1,𝒑2,𝒑3

Barycentric Coordinates

Barycentric Coordinates:

• Linear formulation:

𝒑 = 𝛼𝒑1 + 𝛽𝒑2 + 𝛾𝒑3

= 𝛼𝒑1 + 𝛽𝒑2 + 1 − 𝛼 − 𝛽 𝒑3

= 𝛼𝒑1 + 𝛽𝒑2 + 𝒑3 − 𝛼𝒑3 − 𝛽𝒑3

= 𝒑3 + 𝛼 𝒑1 − 𝒑3 + 𝛽 𝒑2 − 𝒑3

Barycentric Coordinates

𝒑 = 𝛼𝒑1 + 𝛽𝒑2 + 𝛾𝒑3, with 𝛼 + 𝛽 + 𝛾 = 1

Bézier Triangles: Overview

Bézier Triangles: Main Ideas
• Use 3D points as inputs to the blossoms

• These are Barycentric coordinates of a parameter triangle 𝑎, 𝑏, 𝑐

• Use 3D points as outputs

• Form control points by multiplying parameter points, just as in the curve
case: 𝒑 𝑎,… , 𝑎, 𝑏,… , 𝑏, 𝑐, … , 𝑐

• De Casteljau Algorithm: compute polynomial values 𝑝 𝑥,… , 𝑥 by
barycentric interpolation

𝑖 𝑗 𝑘

Plugging in the Barycentric Coord’s

Analog: 2D curves in barycentric coordinates
• Barycentric coordinates for 2D curves:

Plugging in the Barycentric Coord’s

Analog: 2D curves in barycentric coordinates
• Barycentric coordinates for 2D curves:

• 𝑝 = 𝛼𝑎 + 𝛽𝑏, 𝛼 + 𝛽 = 1

• Bézier splines:

𝑭 𝑡 = σ𝑖=0
𝑑 𝑑

𝑖
1 − 𝑡 𝑖𝑡𝑑−𝑖𝒇 𝒂,… , 𝒂, 𝒃, … , 𝒃 (standard form)

𝑭 𝒑 = σ 𝑖+𝑗=𝑑
𝑖≥0,𝑗≥0

𝑑!

𝑖!𝑗!
𝛼𝑖𝛽𝑗𝒇 𝒂,… , 𝒂, 𝒃, … , 𝒃 (barycentric form)

𝑖 𝑑 − 𝑖

𝑖 𝑗

Example

Cubic Bézier Triangle:

De Casteljau Algorithm

𝒙 = 𝛼𝒂 + 𝛽𝒃 + 𝛾𝒄,

𝛼 + 𝛽 + 𝛾 = 1

Bernstein Form

Writing this recursion out, we obtain:

𝐹 𝒙 = ෍
𝑖+𝑗+𝑘=𝑑
𝑖,𝑗,𝑘≥0

𝑑!

𝑖! 𝑗! 𝑘!
𝛼𝑖𝛽𝑗𝛾𝑘𝒇 𝑎,… , 𝑎, 𝑏, … , 𝑏, 𝑐, … , 𝑐

𝒙 = 𝛼𝒂 + 𝛽𝒃 + 𝛾𝒄,

𝛼 + 𝛽 + 𝛾 = 1

• This is the Bernstein form of a Bézier triangle surface

• (Proof by induction)

𝑖 𝑗 𝑘

Continuity

We need to assemble Bézier triangles continuously:
• What are the conditions for 𝐶0, 𝐶1 continuity?

• As an example, we will look at the quadratic case…

• (Try the cubic case as an exercise)

Continuity

Situation:

• Two Bézier triangles meet along a common edge.
• Parametrization: 𝑇1 = 𝒂, 𝒃, 𝒄 , 𝑇2 = 𝒄, 𝒃, 𝒅

• Polynomial surfaces 𝑭 𝑇1 , 𝑮 𝑇2
• Control points:

• 𝑭 𝑇1 : 𝒇 𝒂, 𝒂 , 𝒇 𝒂, 𝒃 , 𝒇 𝒃, 𝒃 , 𝒇 𝒂, 𝒄 , 𝒇 𝒄, 𝒄 , 𝒇 𝒃, 𝒄

• 𝑮 𝑇2 : 𝒈 𝒅, 𝒅 , 𝒈 𝒅, 𝒃 , 𝒈 𝒃, 𝒃 , 𝒈 𝒅, 𝒄 , 𝒈 𝒄, 𝒄 , 𝒈 𝒃, 𝒄

Continuity

Situation:

Continuity

𝑪𝟎 continuity:
• The points on the boundary have to agree:

𝒇 𝒃, 𝒃 = 𝒈 𝒃, 𝒃
𝒇 𝒃, 𝒄 = 𝒈 𝒃, 𝒄
𝒇 𝒄, 𝒄 = 𝒈 𝒄, 𝒄

• Proof: Let 𝒙 ≔ 𝛽𝒃 + 𝛾𝒄, 𝛽 + 𝛾 = 1

𝒇 𝒙, 𝒙 = 𝛽𝒇 𝒃, 𝒙 + 𝛾𝒇 𝒄, 𝒙
= 𝛽2𝒇 𝒃, 𝒃 + 2𝛽𝛾𝒇 𝒃, 𝒄 + 𝛾2𝒇 𝒄, 𝒄

= 𝛽2𝒈 𝒃, 𝒃 + 2𝛽𝛾𝒈 𝒃, 𝒄 + 𝛾2𝒈 𝒄, 𝒄
= 𝛽𝒈 𝒃, 𝒙 + 𝛾𝒈 𝒄, 𝒙 = 𝒈 𝒙, 𝒙

𝒈 𝒃, 𝒃 𝒈 𝒃, 𝒄 𝒈 𝒄, 𝒄

= = =

Continuity

𝑪𝟏 continuity:
• We need 𝐶0 continuity.

In addition:

• Points at hatched quadrilaterals are coplanar

• Hatched quadrilaterals are an affine image of
the same parameter quadrilateral

Continuity

𝑪𝟏 continuity:
• We need 𝐶0 continuity.

In addition:

The blossoms have to agree partially:

𝒇 𝒂, 𝒃 = 𝒈 𝒂, 𝒃

𝒇 𝒃, 𝒅 = 𝒈 𝒃, 𝒅

𝒇 𝒂, 𝒄 = 𝒈 𝒂, 𝒄

𝒇 𝒄, 𝒅 = 𝒈 𝒄, 𝒅

Continuity

𝑪𝟏 continuity: Proof
• Derivatives:

𝜕

𝜕෡𝒅
𝑭 𝒙 ȁ𝒙=𝒑 = 𝒇 𝒑 , ෡𝒅

(similar to the curve case)
• 𝐶1-Continuity:

∀𝒙 ∈ ℝ3: 𝒇 𝒑, 𝒙 = 𝒈 𝒑, 𝒙

• We have to show

∀𝒙 ∈ ℝ3: ቊ
𝒇 𝒃, 𝒙 = 𝒈 𝒃, 𝒙

𝒇 𝒄, 𝒙 = 𝒈 𝒄, 𝒙

• ⇒ 𝐶1 continuity follows for all boundary
points (by interp.)

Continuity

𝑪𝟏 continuity: Proof
• So we have to show

∀𝒙 ∈ ℝ3: ቊ
𝒇 𝒃, 𝒙 = 𝒈 𝒃, 𝒙

𝒇 𝒄, 𝒙 = 𝒈 𝒄, 𝒙

• Proof:

Write 𝒙 = 𝛼𝒂 + 𝛽𝒃 + 𝛾𝒄 (coordinate system)

𝒇 𝒃, 𝒙 = 𝛼𝒇 𝒂, 𝒃 + 𝛽𝒇 𝒃, 𝒃 + 𝛾𝒇 𝒃, 𝒄

𝒈 𝒃, 𝒙 = 𝛼𝒈 𝒂, 𝒃 + 𝛽𝒈 𝒃, 𝒃 + 𝛾𝒈 𝒃, 𝒄

𝒇 𝒃, 𝒙 = 𝒈 𝒃, 𝒙 ⇔ 𝛼𝒇 𝒂, 𝒃 + 𝛽𝒇 𝒃, 𝒃 + 𝛾𝒇 𝒃, 𝒄

= 𝛼𝒈 𝒂, 𝒃 + 𝛽𝒈 𝒃, 𝒃 + 𝛾𝒈 𝒃, 𝒄

⇔ 𝒇 𝒂, 𝒃 = 𝒈 𝒂, 𝒃 (same for the other conditions)

𝐶0 𝐶0

Continuity

So what does this mean?
• The blossoms have to agree partially:

𝒇 𝒂, 𝒃 = 𝒈 𝒂, 𝒃

𝒇 𝒃, 𝒅 = 𝒈 𝒃, 𝒅

𝒇 𝒂, 𝒄 = 𝒈 𝒂, 𝒄

𝒇 𝒄, 𝒅 = 𝒈 𝒄, 𝒅

• The points must be coplanar

(with edge points):
𝒇 𝒂, 𝒃 , 𝒈 𝒃, 𝒅 , 𝒈 𝒃, 𝒃 , 𝒈 𝒃, 𝒄

• The points in 𝑭 must be affine images of

the points in 𝑮

Subdivision Curves and Surfaces

陈仁杰
renjiec@ustc.edu.cn

http://staff.ustc.edu.cn/~renjiec

Computer Aided Geometric Design
Fall Semester 2024

mailto:renjiec@ustc.edu.cn
http://staff.ustc.edu.cn/~renjiec

Subdivision Surfaces

Problem with Spline Patches
• A continuous tensor product spline surface is only defined on a regular

grid of quads as parametrization domain

• Thus, the topology of the object is restricted

• Assembling multiple parameter domains to a single surface is tedious,
hard to get continuity guarantees

• Handling trimming curves is not that straightforward

Question: can we do better?

Subdivision Surfaces

Wish list:
• Provide a very coarse representation of the geometry

• Obtain a fine and smooth representation

• Preferably by means of a simple set of rules which can be recursively
applied (subdivision rules or subdivision scheme)

Subdivision Surfaces

Bigger goals:
• Simplify the creation of smooth refined geometric models

(especially in feature film industry)

• What’s lost? Parametric representation …

Basic Scheme

Subdivision Curves & Surfaces: Three Steps
• Subdivide current polygon

• Insert linearly interpolated points (splitting)

• Move points: local weighted average (averaging)
• To all points – approximating scheme

• To new points only – interpolating scheme

1. 2. 3.

splitting averaging

subdivision

Basic Scheme

Subdivision Curves & Surfaces: Three Steps
• Subdivide current mesh

• Insert linearly interpolated points (splitting)

• Move points: local weighted average (averaging)
• To all points – approximating scheme

• To new points only – interpolating scheme

splitting averaging

subdivision

1. 2. 3.

Subdivision Surfaces

The main question is:
• How should we place the new points to create a

smooth surface?

(interpolating scheme)

• Respectively: how should we alter the points in
each subdivision step to create a smooth surface?

(approximating scheme)

Subdivision Schemes

More precisely
• What are good averaging masks?

• The averaging mask determines the weights by which new point
positions are computed

Interesting observation:
• Most averaging schemes do not converge

(in particular interpolating schemes)

• We need to be very careful to design a good averaging mask

• How can we guarantee 𝐶1, 𝐶2 surfaces?

Subdivision Surfaces – History

de Rahm described a 2D (curve) subdivision scheme in 1947;
rediscovered in 1974 by Chaikin

Concept extended to 3D (surface) schemes by two separate groups
in 1978:

• Doo and Sabin found a biquadratic surface

• Catmull and Clark found a bicubic surface

Subsequent work in the 1980s (Loop 1987, Dyn [Butterfly subdivision]
1990) led to tools suitable for CAD/CAM and animation

Subdivision Surfaces and the Movies

Pixar first demonstrated subdivision surfaces in 1997
with Geri’s Game

• Up until then they’d done everything in NURBS (Toy Story, a
Bug’s Life)

• From 1999 onwards, everything they did was with subdivision
surfaces (Toy Story 2, Monsters Inc, Finding Nemo…)

It’s not clear what Dreamworks uses, but they have
recent patents on subdivision techniques

Curves Revisited

Corner Cutting Splines [Chaikin 1974]:
1. Split each line segment in half

2. Average every point with its next neighbor
(clock-wise)

3. Repeat

• Converges to quadratic B-Spline curve

Matrix Notation

Curve Subdivision in matrix notation:

• Control points at level 𝑙: 𝒑𝑖
𝑙

• “Splitted” points at level 𝑙 + 1: ෥𝒑𝑖
𝑙+1

• “Averaged” control points at level 𝑙 + 1: 𝒑𝑖
𝑙+1

Matrix Notation

Splitting in matrix notation

2𝑛

⋮

෤𝑥2𝑖
𝑙+1

෤𝑥2𝑖+1
𝑙+1

⋮

= 2𝑛

⋱
1
Τ1 2 Τ1 2

1
Τ1 2 Τ1 2

⋱

⋮

𝑥𝑖
𝑙

𝑥𝑖+1
𝑙

⋮

𝑛

Averaging in matrix notation

2𝑛

⋮

𝑥2𝑖
𝑙+1

𝑥2𝑖+1
𝑙+1

⋮

= 2𝑛 ൞

⋱
Τ1 2 Τ1 2

Τ1 2 Τ1 2

⋱

⋮

෤𝑥2𝑖
𝑙+1

෤𝑥2𝑖+1
𝑙+1

⋮

2𝑛

𝑛

2𝑛

a different view on the same algorithm…

Chaikin’s Corner Cutting

• 𝑄0 =
3

4
𝑃0 +

1

4
𝑃1

• 𝑄1 =
1

4
𝑃0 +

3

4
𝑃1

• 𝑄2 =
3

4
𝑃1 +

1

4
𝑃2

• 𝑄3 =
1

4
𝑃1 +

3

4
𝑃2

• 𝑄4 =
3

4
𝑃2 +

1

4
𝑃3

• 𝑄5 =
1

4
𝑃2 +

3

4
𝑃3

Apply
Iterated
Function
System

𝑄2𝑖 =
3

4
𝑃𝑖 +

1

4
𝑃𝑖+1

𝑄2𝑖+1 =
1

4
𝑃𝑖 +

3

4
𝑃𝑖+1

Limit Curve/Surface

Chaikin’s Corner Cutting

Chaikin curve subdivision (2D)
• On each edge, insert new control points at Τ1 4 and Τ3 4 between old

vertices; delete old points

• The limit curve is 𝐶1 everywhere

Chaikin’s Corner Cutting

Chaikin can be written programmatically as

𝑃2𝑖
𝑘+1 = Τ3 4 𝑃𝑖

𝑘 + Τ1 4 𝑃𝑖+1
𝑘 ←Even

𝑃2𝑖+1
𝑘+1 = Τ1 4 𝑃𝑖

𝑘 + Τ3 4 𝑃𝑖+1
𝑘 ←Odd

• …where 𝑘 is the ‘generation’; each generation will have twice as
many control points as before

• Notice the different treatment of generating odd and even
points

• Borders (terminal points) are a special case

Chaikin’s Corner Cutting

Chaikin can be written in matrix/vector notation as:

⋮
𝑃2𝑖−2
𝑘+1

𝑃2𝑖−1
𝑘+1

𝑃2𝑖
𝑘+1

𝑃2𝑖+1
𝑘+1

𝑃2𝑖+2
𝑘+1

𝑃2𝑖+3
𝑘+1

⋮

=
1

4

⋱ ⋰
0 3 1 0 0 0
0 1 3 0 0 0
0 0 3 1 0 0
0 0 1 3 0 0
0 0 0 3 1 0
0 0 0 1 3 0

⋰ ⋱

⋮
𝑃𝑖−2
𝑘

𝑃𝑖−1
𝑘

𝑃𝑖
𝑘

𝑃𝑖+1
𝑘

𝑃𝑖+2
𝑘

𝑃𝑖+3
𝑘

⋮

Chaikin’s Corner Cutting

The standard notation compresses the scheme to a kernel:
• ℎ = Τ1 4 … , 0,0,1,3,3,1,0,0, …

The kernel interlaces the odd and even rules

It also makes matrix analysis possible: eigen-analysis of the matrix
form can be used to prove the continuity of the subdivision limit
surface

The limit curve of Chaikin is a quadratic B-spline!

Cubic B-Spline Subdivision Scheme

Lane-Riesenfeld subdivision

Algorithm:
• Linearly subdivide the curve by inserting the midpoint on each edge

• Perform Averaging by replacing each edge by its midpoint 𝑑 times

• Let’s examine the case of 𝑑 = 2

Lane-Riesenfeld subdivision

Examples:
• Closed curve

Lane-Riesenfeld subdivision

Close examination
• Step by step

𝑎1 =
𝐴 + 𝐵

2

𝑐1 =
𝐵 + 𝐶

2

𝑎2 =
𝐵 + 𝑎1
2

𝑐2 =
𝐵 + 𝑐1
2

𝑏1 =
𝑎2 + 𝑐2

2

=
𝑎1 + 2𝐵 + 𝑐1

4

=
𝐴 + 6𝐵 + 𝐶

8

𝑎1
𝑏1
𝑐1

=
1

8

4 4 0
1 6 1
0 4 4

𝐴
𝐵
𝐶

Lane-Riesenfeld subdivision

Close examination:
• In matrix form

𝑎1
𝑏1
𝑐1

=
1

8

4 4 0
1 6 1
0 4 4

𝐴
𝐵
𝐶

Separate Splitting Step

Using a separate splitting matrix

⋮

𝒑2𝑖
𝑙+1

𝒑2𝑖+1
𝑙+1

⋮

=

⋱
1

4

1

2

1

4
1

4

1

2

1

4
1

4

1

2

1

4
1

4

1

2

1

4

⋱

⋱
1
1

2

1

2

1
1

2

1

2

⋱

⋮

𝒑𝑖
𝑙

𝒑𝑖+1
𝑙

⋮

⋮

𝒑2𝑖
𝑙+1

𝒑2𝑖+1
𝑙+1

⋮

=

⋱
1

8

3

4

1

8
1

2

1

2
1

8

3

4

1

8
1

2

1

2
⋱

⋮

𝒑𝑖
𝑙

𝒑𝑖+1
𝑙

⋮

𝒑2𝑖
𝑙+1

=
1

4
𝒑𝑖

𝑙
+

1

2

1

2
𝒑𝑖

𝑙
+

1

2
𝒑𝑖+1

𝑙
+

1

4
𝒑𝑖+1

𝑙
=

1

2
𝒑𝑖

𝑙
+

1

2
𝒑𝑖+1

𝑙

𝒑2𝑖+1
𝑙+1

=
1

4

1

2
𝒑𝑖

𝑙
+

1

2
𝒑𝑖+1

𝑙
+

1

2
𝒑𝑖+1

𝑙
+

1

4

1

2
𝒑𝑖+1

𝑙
+

1

2
𝒑𝑖+2

𝑙
=

1

8
𝒑𝑖

𝑙
+

6

8
𝒑𝑖+1

𝑙 +
1

8
𝒑𝑖+2

𝑙

2𝑛 × 2𝑛 averaging 2𝑛 × 𝑛 spliting

One step

Separate Splitting Step

Using a separate splitting matrix

⋮

𝒑2𝑖
𝑙+1

𝒑2𝑖+1
𝑙+1

⋮

=

⋱
1

4

1

2

1

4
1

4

1

2

1

4
1

4

1

2

1

4
1

4

1

2

1

4
⋱

⋱
1
1

2

1

2
1
1

2

1

2
⋱

⋮

𝒑𝑖
𝑙

𝒑𝑖+1
𝑙

⋮

2𝑛 × 2𝑛 averaging

2𝑛 × 𝑛 spliting

Cubic Subdivision

Consider the Kernel

• ℎ =
1

8
… , 0,0,1,4,6,4,1,0,0,…

You would read this as

• 𝑃2𝑖
𝑘+1 = Τ1 8 𝑃𝑖−1

𝑘 + 6𝑃𝑖
𝑘 + 𝑃𝑖+1

𝑘

• 𝑃2𝑖+1
𝑘+1 = Τ1 8 4𝑃𝑖

𝑘 + 4𝑃𝑖+1
𝑘

The limit curve is provably 𝑪𝟐 continuous

General Formula:

B-spline curve subdivision:
• Splitting step as usual (insert midpoints on lines)

• Averaging mask is stationary (constant everywhere):
1

2𝑑−1
𝑑 − 1
0

,
𝑑 − 1
1

,… ,
𝑑 − 1
𝑑 − 1

for B-splines of degree 𝑑

Approximating the curve
• Infinite subdivision will create a dense point set that converges to

the curve

Spectral Convergence Analysis
of the cubic B-Spline Subdivision Scheme

The Spectral Limit Trick

Problem:
• We need to subdivide several times to obtain a good approximation

• This might yield more control points than necessary

(think of adaptive rendering with low level of detail)

• Can we directly compute the limit position for a control points?

Computing the Limit

Observations:
• Every curve point is influenced only by a fixed

number of control points

• Even stronger : Every point 𝑝 𝑙+1 is only influenced
by a small neighborhood of points in 𝑝 𝑙

• To each neighborhood, the same subdivision
matrix is applied (splitting & averaging)

The Local Subdivision Matrix

Invariant Neighborhood
• Example: Cubic B-splines

• A single point lies in one of two adjacent spline segments

• So at most 5 control points are influencing each point on
the curve

• A closer look at the subdivision rule reveals that limit
properties can actually be computed from 3 points (two
direct neighbors)

Local Subdivision Matrix

Local subdivision matrix:
• Transforms a neighborhood of points

Example: cubic B-spline
• Only the two direct neighbors influence the point in the next level
• The local subdivision matrix is

𝑥− = left neighbor
𝑥 = point (𝑥/𝑦/𝑧-coordinate)
𝑥+ = right neighbor

𝑥−
𝑙+1

𝑥 𝑙+1

𝑥+
𝑙+1

=

1

2

1

2
0

1

8

3

4

1

8

0
1

2

1

2

𝑥−
𝑙

𝑥 𝑙

𝑥+
𝑙

= 𝑀𝑠𝑢𝑏𝑑𝑖𝑣

To the Limit…

This means:
• At any recursion depth of the subdivision, we can send a point to the

limit by evaluating:

𝑥−
∞

𝑥 ∞

𝑥+
∞

= lim
𝑘→∞

𝑴𝑠𝑢𝑏𝑑𝑖𝑣
𝑘

𝑥−
𝑙

𝑥 𝑙

𝑥+
𝑙

= lim
𝑘→∞

1

2

1

2
0

1

8

3

4

1

8

0
1

2

1

2

𝑘

𝑥−
𝑙

𝑥 𝑙

𝑥+
𝑙

To the Limit…

Spectral power:
• Assuming the matrix 𝑴𝑠𝑢𝑏𝑑𝑖𝑣 is diagonizable, we get:

𝑥−
∞

𝑥 ∞

𝑥+
∞

= lim
𝑘→∞

𝑼𝑫𝒌𝑼−𝟏

𝑥−
𝑙

𝑥 𝑙

𝑥+
𝑙

= 𝑈 lim
𝑘→∞

𝐷𝑘 𝑈−1

𝑥−
𝑙

𝑥 𝑙

𝑥+
𝑙

=
1 −1 −2
1 0 1
1 1 −2

lim
𝑘→∞

1 0 0

0
1

2
0

0 0
1

4

𝑘 1

6

2

3

1

6

−
1

2
0

1

2

−
1

6

1

3
−
1

6

𝑥−
𝑙

𝑥 𝑙

𝑥+
𝑙

To the Limit…

Spectral power:
• For cubic B-splines:

•

𝑥−
∞

𝑥 ∞

𝑥+
∞

=
1 −1 −2
1 0 1
1 1 −2

1 0 0
0 0 0
0 0 0

1

6

2

3

1

6

−
1

2
0

1

2

−
1

6

1

3
−

1

6

𝑥−
1

𝑥 1

𝑥+
1

=

1

6

2

3

1

6
1

6

2

3

1

6
1

6

2

3

1

6

𝑥−
1

𝑥 1

𝑥+
1

• and hence

𝑥 ∞ =
1

6
,
2

3
,
1

6

𝑥−
1

𝑥 1

𝑥+
1

To the Limit, in General

• In general:
• The dominant eigenvalue / eigenvector of the subdivision scheme

determines the limit mask

Necessary Condition

Necessary condition for convergence:
• 1 must be the largest eigenvalue (in absolute value)

• Otherwise the subdivision either explodes (>1) or shrinks to the origin
(<1)

𝑥−𝑛
𝑙+𝑘

⋮

𝑥0
𝑙+𝑘

⋮

𝑥+𝑛
𝑙+𝑘

= 𝑴𝑠𝑢𝑏𝑑𝑖𝑣
𝑘

𝑥−𝑛
𝑙

⋮

𝑥0
𝑙

⋮

𝑥+𝑛
𝑙

= 𝑼𝑫𝑘𝑼−1

𝑥−𝑛
𝑙

⋮

𝑥0
𝑙

⋮

𝑥+𝑛
𝑙

Affine Invariance

Affine Invariance
• The limit curve should be independent of the choice of a coordinate

system

• We get this, if the intermediate subdivision points are affine invariant

• For this, the rows of the (local) subdivision matrix must sum to one:
1

2

1

2
0

1

8

3

4

1

8

0
1

2

1

2

Affine Invariance

Affine Invariance
• For this, the rows of the (local) subdivision matrix must sum to one:

1

2

1

2
0

1

8

3

4

1

8

0
1

2

1

2
• This means: The one-vector 1 must be an eigenvector with eigenvalue 1:

• 𝑴𝑠𝑢𝑏𝑑𝑖𝑣𝟏 = 𝟏

• This must also be the largest eigenvalue / vector pair

• One can show: it must be the only eigenvector with eigenvalue 1, otherwise the
scheme does not converge

Summary

For a reasonable subdivision scheme, we need at least:
• 1 must be an eigenvector with eigenvalue 1.

• This must be the largest eigenvalue.

• The second eigenvalue should be smaller than 1

• All other eigenvalues should be smaller than the second one

(This is assuming a diagonizable subdivision matrix.)

More details: Zorin, Schroder – Subdivision for Modeling and Animation,
Siggraph 2000 course

B-Spline Subdivision Surfaces

B-Spline Subdivision Surfaces

B-Spline Subdivision Surfaces
• We can apply the tensor product construction to obtain subdivision

surfaces

B-Spline Subdivision Surfaces

Tensor Product B-Spline Subdivision Surfaces
• Start with a regular quad mesh

(will be relaxed later)

• In each subdivision step:
• Divide each quad in four (quadtree subdivision)

• Place linearly interpolated vertices

• Apply 2-dimensional averaging mask

B-Spline Subdivision Surfaces

Bilinear Subdivision Surfaces + quad averaging:
• Quad averaging : reposition each vertex at the centroid of its adjacent

quads

B-Spline Subdivision Surfaces

Biquadratic case:
• Recall the matrix B-spline patch representation

𝑃 𝑢, 𝑣 = 1 𝑢 𝑢2 𝑀𝑃𝑀𝑇
1
𝑣
𝑣2

𝑀 =
1

2

1 1 0
−2 2 0
1 −2 1

, 𝑃 =

𝑃0,0 𝑃0,1 𝑃0,2
𝑃1,0 𝑃1,1 𝑃1,2
𝑃2,0 𝑃2,1 𝑃2,2

B-Spline Subdivision Surfaces

Biquadratic case:

• By restricting to only one quadrant of the 2 × 2 patch, i.e. 𝑢, 𝑣 ∈ [0,
1

2
]. We

consider the new surface patch 𝑃′ defined by re-parameterization 𝑢′ =
𝑢

2
, 𝑣′ =

𝑣

2

𝑃′ 𝑢, 𝑣 = 𝑃
𝑢

2
,
𝑣

2
= 1 ൗ𝑢 2 ൗ𝑢2

4
𝑀𝑃𝑀𝑇

1
Τ𝑣 2

Τ𝑣2 4

= ⋯ = 1 𝑢 𝑢2 𝑀𝑃′𝑀𝑇
1
𝑣
𝑣2

B-Spline Subdivision Surfaces

Biquadratic case:

• By restricting to only one quadrant of the 2 × 2 patch, i.e. 𝑢, 𝑣 ∈ [0,
1

2
]. We

consider the new surface patch 𝑃′ defined by re-parameterization 𝑢′ =
𝑢

2
, 𝑣′ =

𝑣

2

𝑃′ = 𝑆𝑃𝑆𝑇

𝑆 = 𝑀−1

1 0 0

0
1

2
0

0 0
1

4

𝑀

B-Spline Subdivision Surfaces

Biquadratic case:
• By restricting to only one quadrant of the

2 × 2 patch, i.e. 𝑢, 𝑣 ∈ [0,
1

2
]. We consider

the new surface patch 𝑃′ defined by re-
parameterization 𝑢′ =

𝑢

2
, 𝑣′ =

𝑣

2

𝑃00
′ =

1

16
9𝑃00 + 3𝑃10 + 3𝑃01 + 𝑃11

𝑃01
′ =

1

16
3𝑃00 + 𝑃10 + 9𝑃01 + 3𝑃11

𝑃02
′ =

1

16
9𝑃01 + 3𝑃11 + 3𝑃02 + 2𝑃12

𝑃11
′ =

1

16
3𝑃00 + 9𝑃10 + 𝑃01 + 3𝑃11

𝑃11
′ =

1

16
𝑃00 + 3𝑃10 + 3𝑃01 + 9𝑃11

𝑃12
′ =

1

16
3𝑃01 + 9𝑃11 + 𝑃02 + 3𝑃12

𝑃20
′ =

1

16
9𝑃10 + 3𝑃20 + 3𝑃11 + 𝑃21

𝑃21
′ =

1

16
3𝑃10 + 𝑃20 + 9𝑃11 + 3𝑃21

𝑃22
′ =

1

16
9𝑃11 + 3𝑃21 + 3𝑃12 + 𝑃22

B-Spline Subdivision Surfaces

Bicubic case:
• Recall the matrix B-spline patch representation

𝑃 𝑢, 𝑣 = 𝑢3 𝑢2 𝑢 1 𝑀𝑃𝑀𝑇

𝑤3

𝑤2

𝑤
1

𝑀 =
1

6

−1 3 −3 1
3 −6 3 0
−3 0 3 0
1 4 1 0

B-Spline Subdivision Surfaces

Bicubic case:

• By restricting to only one quadrant of the 3 × 3 patch, i.e. 𝑢, 𝑣 ∈ [0,
1

2
]. We

consider the new surface patch 𝑃′ defined by re-parameterization 𝑢′ =
𝑢

2
, 𝑣′ =

𝑣

2

• We obtain similarly (by matrix manipulation)

𝑃′ = 𝑆𝑃𝑆𝑇

𝑆 =
1

8

4 4 0 0
1 6 1 0
0 4 4 0
0 1 6 1

Subdivision and Averaging Masks

What is the subdivision mask?
• Can be derived from tensor product construction:

face midpoint edge midpoint original vertex
(odd/odd) (even/odd) (even/even)

Subdivision and Averaging Masks

What is the averaging mask?
• Can be derived from tensor product construction, too

Any (split) vertex

Remaining Problems

Remaining Problems:
• The derived rules work only in the interior or a regular quad mesh

• We did not really gain any flexibility over the standard B-spline
construction

• We still need to figure out, how to …
• …handle quad meshes of arbitrary topology

• …handle boundary regions

• Placing boundaries in the interior of objects will allow us to model sharp 𝐶0 creases

• So we also have some continuity control (despite the uniform B-Spline scheme)

Here is the answer…

Answer: Catmull-Clark subdivision scheme at
extraordinary vertices

Observation:
• The recursive subdivision rule always creates regular grids

• Problems can only occur at “extraordinary” vertices
• These are vertices where the base has degree > 4

• Extraordinary vertices are maintained by quadtree-like-subdivision

• All new vertices are ordinary

Here is the answer…

Answer: Catmull-Clark subdivision scheme at extraordinary vertices

Subdivision mask at extraordinary vertex:
• Vertex degree 𝑘 (number of incident faces)

• The surface is 𝐶1 at extraordinary vertices

Here is the answer…

Averaging mask:
• Use after bilinear splitting

Boundary Rules

Subdivision mask at boundaries / sharp creases:

• Just use the normal spline curve rules

• This gives visually good results

• However, the surface is not strictly 𝐶1 at the boundary

• There is a modified weighting scheme that creates half-sided 𝐶1-
continuous surfaces at the boundary curves

1

2

1

2

1

8

3

4

1

8

1

4

1

2

1

4
(odd) (even) (averaging mask)

Boundary Rules

Subdivision Mask for Boundary Conditions

Edge Rule (odd) Vertex Rule (even)

Catmull-Clark in short

Face, edge, vertex points:
1. Introduce a face point for each face of the original mesh. The point is

simply the average of all the points that bound the face.
2. An edge point is created for each interior edge of the polygonal surface.

The point is the average of the midpoint of the edge and the two face
points on both sides of the edge

3. A vertex point is generated for each interior vertex 𝑃 of the original

mesh. The point is the average of 𝑄, 2𝑅, and
𝑛−3 𝑆

𝑛
, where 𝑄 is the

average of the face points on all the faces adjacent to 𝑃, 𝑅 is the
average of the midpoints of all the edges incident on 𝑃, and 𝑆 is simply
𝑃 itself

Catmull-Clark scheme

Other Subdivision Schemes
Loop, Butterfly, …

Subdivision Zoo

A large number of subdivision scheme exists. The most popular are:
• Catmull-Clark subdivision

(quad-mesh, approximating, 𝐶2 surfaces, 𝐶1 at extraordinary vertices)

• Loop subdivision

(triangular, approximating, 𝐶2 surfaces, 𝐶1 at extraordinary vertices)

• Butterfly subdivision

(triangular, interpolation, 𝐶1 surfaces, 𝐶1 at extraordinary vertices)

Examples of other schemes:

• 3-subdivision (level of detail increases more slowly)

• Circular subdivision (used e.g. for surfaces of revolution)

Comparisons

•

Triangular Subdivision

Triangular Subdivision:

• Uses 1:4 triangular splits

• Extraordinary vertices: valence ≠ 6

• Again:

• Splitting with linear interpolation

• Then apply averaging mask

splitting averaging

1. 2. 3.

Loop Subdivision

averaging mask boundary/sharp
crease mask

evaluation (limit) mask

1

4

1

2

1

4

𝛼 𝑘 = ൘
𝑘 1 − 𝛽 𝑘

𝛽 𝑘
𝜀 𝑘 = ൘

3𝑘
4𝛽 𝑘

𝛽 𝑘 =
5

4
−

3 + 2 cos Τ2𝜋 𝑘 2

32

Butterfly Scheme

Butterfly scheme:
• Original points remain unmodified

(interpolating scheme)

• New points averaged as shown on the right

• 𝐶1, except from extraordinary vertices

• Can be modified to be 𝐶1 everywhere

split triangles

original triangles

averaging mask

𝑡 ∈ 0, ൗ1 8

0 ෝ= polyhedral, Τ1 8 ෝ= smooth

Implicit Surfaces

陈仁杰
renjiec@ustc.edu.cn

http://staff.ustc.edu.cn/~renjiec

Computer Aided Geometric Design
Fall Semester 2024

mailto:renjiec@ustc.edu.cn
http://staff.ustc.edu.cn/~renjiec

Implicit Surfaces
Introduction

Modeling Zoo

Parametric Models Primitive Models

Implicit Models Particle Models

Implicit Functions

Basic Idea:
• We describe an object 𝑆 ⊆ ℝ𝑑 by an implicit equation:

• 𝑆 = 𝑥 ∈ ℝ𝑑|𝑓 𝑥 = 0

• The function 𝑓 describes the shapes of the object.

• Applications:
• In general, we could describe arbitrary objects

• Most common case: surfaces in ℝ3

• This means, 𝑓 is zero on an infinitesimally thin sheet only

The Implicit Function Theorem

Implicit Function Theorem:
• Given a differentiable function

𝑓:ℝ𝑛 ⊇ 𝐷 → ℝ, 𝑓 𝒙 0 = 0,
𝜕

𝜕𝑥𝑛
𝑓 𝒙 0 =

𝜕

𝜕𝑥𝑛
𝑓 𝑥1

0
, … , 𝑥𝑛

0
≠ 0

• Within an 𝜀-neighborhood of 𝒙 0 we can represent the zero level set of
𝑓 completely as a heightfield function 𝑔

𝑔:ℝ𝑛−1 → ℝ such that for 𝒙 − 𝒙 0 < 𝜀 we have:

𝑓 𝑥1, … , 𝑥𝑛−1, 𝑔 𝑥1, … , 𝑥𝑛−1 = 0 and

𝑓 𝑥1, … , 𝑥𝑛 ≠ 0 everywhere else
• The heightfield is a differentiable 𝑛 − 1 -manifold and its surface normal

is colinear to the gradient of 𝑓.

This means

If we want to model surfaces, we are on the safe side if:
• We use a smooth (differentiable) function 𝑓 in ℝ3

• The gradient of 𝑓 does not vanish

This gives us the following guarantees:
• The zero-level set is actually a surface

• We obtained a closed 2-manifold without boundary

• We have a well defined interior / exterior.

Sufficient:
• We need smoothness / non-vanishing gradient only close to the zero-

crossing.

Implicit Functions Types

Function Types:
• General case

• Non-zero gradient at zero crossings

• Otherwise arbitrary

• Signed implicit function:
• sign(𝑓): negative inside and positive outside the object

(or the other way round, but we assume this orientation here)

• Signed distance field (SDF)
• 𝑓 = distance to the surface

• sign(𝑓): negative inside, positive outside

• Squared distance function
• 𝑓 = (distance to the surface)2

Implicit Functions Types

Use depends on application:
• Signed implicit function

• Solid modelling
• Interior well defined

• Signed distance function (SDF)
• Most frequently used representation
• Constant gradient → numerically stable surface definition
• Availability of distance value useful for many applications

• Squared distance function
• This representation is useful for statistical optimization
• Minimize sum of squared distances → least squares optimization
• Useful for surface defined up to some insecurity / noise
• Direct surface extraction more difficult (gradient vanishes!)

signed distance

Squared Distance Function

Example: Surface from random samples
1. Determine sample point (uniform)
2. Add noise (Gaussian)

𝑝𝜇,Σ 𝒙 =
1

2𝜋
𝑑
2 𝚺

1
2

exp −
1

2
𝒙 − 𝝁 T𝚺−1 𝒙 − 𝝁

Sampling Gaussian noise many samples Distribution
(in space)

Squared Distance Function

Square Distance Function:
• Sampling a surface with uniform sampling and Gaussian noise:

⇒ Probability density is a convolution of the object with a Gaussian kernel

• Smooth surfaces: The log-likelihood can be approximated by a squared
distance function

Smoothness

Smoothness of signed distance function:
• Any distance function (signed, unsigned, squared) in

general cannot be globally smooth

• The distance function is non-differentiable at the
medial axis
• Media axis = set of points that have the same distances to two

or more different surface points

• For sharp corners, the medial axis touches the surfaces

• This means: 𝑓 non-differentiable on the surface itself

• Usually, this is no problem in practice

Differential Properties

Some useful differential properties:
• We look at a surface point 𝒙, i.e. 𝑓 𝒙 = 0.

• We assume 𝛻𝑓 𝒙 ≠ 0.

• The unit normal of the implicit surface is given by:

𝑛 𝒙 =
𝛻𝑓 𝒙

𝛻𝑓 𝒙

• For signed functions, the normal is pointing outward

• For signed distance functions, this simplifies to 𝒏 𝒙 = 𝛻𝑓 𝒙

Differential Properties

Some useful differential properties:
• The mean curvature of the surface is proportional to the divergence of

the unit normal:

−2𝐻 𝒙 = 𝛻 ⋅ 𝒏 𝒙 =
𝜕

𝜕𝑥
𝑛𝑥 𝒙 +

𝜕

𝜕𝑦
𝑛𝑦 𝒙 +

𝜕

𝜕𝑧
𝑛𝑧 𝒙 = 𝛻 ⋅

𝛻𝑓 𝒙

𝛻𝑓 𝒙

• For a signed distance function, the formula simplifies to:

−2𝐻 𝒙 = 𝛻 ⋅ 𝛻𝑓 𝑥 =
𝜕2

𝜕𝑥2
𝑓 𝒙 +

𝜕2

𝜕𝑦2
𝑓 𝒙 +

𝜕2

𝜕𝑧2
𝑓 𝒙 = Δ𝑓 𝒙

Computing Volume Integrals

Computing volume integrals
• Heavyside function

step 𝑥 = ቊ
0 if 𝑥 ≤ 0
1 if 𝑥 > 0

• Volume integral over interior volume Ω𝑓 of some
function 𝑔 𝒙 (assuming negative interior values):

න

Ω𝑓

𝑔 𝒙 𝑑𝒙 = න

ℝ3

𝑔 𝒙 1 − step 𝑓 𝑥 𝑑𝒙

Computing Surface Integrals

Computing surface integrals:
• Dirac delta functions:

• Idealized function (distribution)

• Zero everywhere (𝛿 𝑥 = 0), except at 𝑥 = 0, where it is positive, infinitely large

• The integral of 𝛿 𝑥 over 𝑥 is one

• Dirac delta function on the surface: directional derivative of step 𝑥 in
normal direction:

መ𝛿 = 𝛻 step 𝑓 𝒙 ⋅ 𝑛 𝒙 = 𝛻step 𝑓 𝒙 𝛻𝑓 𝒙 ⋅
𝛻𝑓 𝒙

𝛻𝑓 𝒙

= 𝛿 𝑓 𝒙 ⋅ 𝛻𝑓 𝒙

Surface Integral

Computing surface integrals:
• Surface integral over the surface 𝜕Ω𝑓 = 𝒙|𝑓 𝒙 = 0

of some function 𝑔 𝒙 :

න

Ω𝑓

𝑔 𝒙 𝑑𝒙 = න

ℝ𝟑

𝒈 𝒙 𝜹 𝒇 𝒙 𝜵𝒇 𝒙 𝒅𝒙

• This looks nice, but is numerically intractable.

• We can fix this using smoothed out Dirac/Heavyside
functions…

Smoothed Functions

Smooth-step function

smoothstep 𝑥 =

0 𝑥 < −𝜀
1

2
+

𝑥

2𝜀
+

1

2𝜋
sin

𝜋𝑥

𝜀
− 𝜀 ≤ 𝑥 ≤ 𝜀

1 𝜀 < 𝑥

Smoothed Dirac delta function

smoothdelta 𝑥 =

0 𝑥 < −𝜀
1

2𝜀
+

1

2𝜀
cos

𝜋𝑥

𝜀
− 𝜀 ≤ 𝑥 ≤ 𝜀

1 𝜀 < 𝑥

Implicit Surfaces
Numerical Discretization

Representing Implicit Functions

Representation: Two basic techniques
• Discretization on grids

• Simple finite differencing (FD) grids

• Grids of basis functions (finite elements FE)

• Hierarchical / adaptive grids (FE)

• Discretization with radial basis functions

(particle FE methods)

Discretization

Discretization examples
• In the following, we will look at 2D examples

• The 3D (𝑑-dimensional) case is similar

Regular Grids

Discretization:
• Regular grid of values 𝑓𝑖,𝑗
• Grid spacing ℎ

• Differential properties can be approximated by
finite differences:

• For example
𝜕

𝜕𝑥
𝑓 𝒙 =

1

ℎ
𝑓𝑖 𝒙 ,𝑗 𝒙 − 𝑓𝑖 𝒙 −1,𝑗 𝒙 + 𝑂 ℎ

𝜕

𝜕𝑥
𝑓 𝒙 =

1

2ℎ
𝑓𝑖 𝒙 +1,𝑗 𝒙 − 𝑓𝑖 𝒙 −1,𝑗 𝒙 + 𝑂 ℎ2

Regular Grids

Variant:
• Use only cells near the surface

• Saves storage & computation time

• However: we need to know an estimate
on where the surface is located to setup
the representation

• Propagate to the rest of the volume (if
necessary):

fast marching method

Fast Marching Method

Problem statement:
• Assume we are given the surface and signed distance value in a narrow

band

• Now we want to compute distance values everywhere on the grid

Three Solutions:
• Nearest neighbor queries

• Eikonal equation

• Fast marching

Nearest Neighbors

Algorithm:
• For each grid cell:

• Compute nearest point on the surface

• Enter distance

• Approximate nearest neighbor computation:
• Look for nearest grid cell with zero crossing first

• Then compute distance curve zero level set using
a Newton-like algorithm (repeated point-to-plane
distance)

• Costs: O(𝑛) kNN queries (𝑛 empty cells)

Eikonal Equation

Eikonal Equation
• Place variables in empty cells

• Fixed values in known cells

• Then solve the following PDE:
𝛻𝑓 = 1

subject to 𝑓 𝒙 = 𝑓known 𝒙

on the known area 𝒙 ∈ 𝐴known
• This is a (non-linear) boundary value

problem

Fast Marching

Solving the Equation:
• The Eikonal equation can be solved efficiently by a region growing

algorithm:
• Start with the initial known values

• Compute new distances at immediate neighbors solving a local Eikonal equation (*)

• The smallest of these values must be correct (similar to Dijkstra’s algorithm)

• Fix this value and update the neighbors again

• Growing front, 𝑂 𝑛 log 𝑛 time

Regular Grids of Basis Functions

Discretization (2D):
• Place a basis function in each grid cell:

𝑏𝑖,𝑗 = 𝑏 𝑥 − 𝑖, 𝑦 − 𝑗

• Typical choices:
• Bivariate uniform cubic B-splines (tensor product)

• 𝑏 𝑥, 𝑦 = exp −𝜆 𝑥2 + 𝑦2

• The implicit function is then represented as

𝑓 𝑥, 𝑦 =෍

0

𝑛𝑖

෍

0

𝑛𝑗

𝜆𝑖,𝑗𝑏𝑖,𝑗 𝑥, 𝑦

• The 𝜆𝑖,𝑗 describe different 𝑓
𝑏2,3

𝑏3,3

Regular Grids of Basis Functions

Differential Properties:
• Derivatives:

𝜕

𝜕𝑥𝑘1…𝜕𝑥𝑘𝑚
𝑓 𝑥, 𝑦 =෍

𝑖=0

𝑛𝑖

෍

𝑗=0

𝑛𝑗

𝜆𝑖,𝑗
𝜕

𝜕𝑥𝑘1…𝜕𝑥𝑘𝑚
𝑏 𝑥, 𝑦

• Derivatives are linear combinations of the derivatives
of the basis function

• In particular: we again get a linear expression in 𝜆𝑖,𝑗

𝑏2,3

𝑏3,3

Adaptive Grids

Adaptive / hierarchical grids:
• Perform a quadtree / octree tessellation of the

domain (or any other partition into elements)

• Refine where more precision is necessary (near
surface, maybe curvature dependent)

• Associate basis functions with each cell (constant
or higher order)

Particle Methods

Particle methods / radial basis function:
• Place a set of “particles” in space at positions 𝒙𝑖
• Associate each with a radial basis function 𝑏 𝒙 − 𝒙𝑖
• The discretization is then given by:

𝑓 𝒙 =෍

𝑖=0

𝑛

𝜆𝑖𝑏 𝒙 − 𝒙𝑖

• The 𝜆𝑖 encode 𝑓.

Particle Methods

Particle methods / radial basis function:
• Obviously, derivatives are again linear in 𝜆𝑖:

𝜕

𝜕𝑥𝑘1…𝜕𝑥𝑘𝑚
𝑓 𝒙 =෍

𝑖=0

𝑛𝑗

𝜆𝑖,𝑗
𝜕

𝜕𝑥𝑘1…𝜕𝑥𝑘𝑚
𝑏 𝒙 − 𝒙𝒊

• The radial basis functions can also have different
size (support) for adaptive refinement

• Placement: near the expected surface

Particle Methods

Particle methods / radial basis function:
• Where should we place the radial basis functions?

• If we have an initial guess for the surface shape:

• Put some on the surface

• And some in +/- normal direction

• Otherwise:

• Uniform placement in lowres

• Solve for surface

• Refine near lowres-surface, iterate

Types of Radial Basis Functions

Typical choices for radial basis functions:
• (Quasi-) compactly supported functions:

• Exponentials / normal distribution densities: exp −𝜆𝒙2

• Uniform (cubic) tensor product B-Splines

• Moving-least squares finite element basis functions (will be discussed later)

• Globally supported functions:
• Thin plate spline basis functions:

𝑥 − 𝑥0
2 ln 𝑥 − 𝑥0 (2D), 𝑥 − 𝑥0

3 (3D)

• These functions guarantee minimal integral second derivatives.

Pros & Cons

Why use globally supported basis functions?
• They come with smoothness guarantees

• However: computations might become expensive (we will see later how
to device efficient algorithms for globally supported radial basis functions)

Locally supported functions:
• Easy to use

• Additional regularization might become necessary to compute a “nice”
surface

Implicit Surfaces
Level Set Extraction

Iso-Surface Extraction

New task:
• Assume we have defined an implicit function

• Now we want to extract the surface

• I.e. convert it to an explicit, piecewise parametric representation, typically
a triangle mesh

• For this we need an iso-surface extraction algorithm
• a.k.a. level set extraction

• a.k.a. contouring

Algorithms

Algorithms:
• Marching Cubes

• This is the standard technique

• We will also discuss some problems / modifications

• Particle methods
• Just to show an alternative

• Not used that frequently in practice

Marching Cubes

Marching Cubes:
• The most frequently used iso surface extraction algorithm

• Creates a triangle mesh from an iso-value surface of a scalar volume

• The algorithm is also used frequently to visualize CT scanner data and
other volume data

• Simple idea:
• Define and solve a fixed complexity, local problem

• Compute a full solution by solving many such local problems incrementally

Marching Cubes

Marching Cubes:
• Here is the local problem:

• We have a cube with 8 vertices

• Each vertex is either inside or outside the volume

(i.e. 𝑓 𝒙 < 0 or 𝑓 𝒙 ≥ 0)

• How should we triangulate this cube?

• How should we place the vertices?

Triangulation

Triangulation:
• We have 256 different cases – each of the 8 vertices can be in or out
• By symmetry, this can be reduced to 15 cases

• Symmetry: reflection, rotation, and bit inversion

• This means, we can compute the topology of the mesh

Vertex Placement

How to place the vertices?
• Zero-th order accuracy: Place vertices at edge midpoints
• First order accuracy: Linearly interpolate vertices along edges.
• Example: for scalar values 𝑓 𝑥 = −0.1 and 𝑓 𝑦 = 0.2, place the vertex

at ratio 1: 2 between 𝑥 and 𝑦

Outer Loop

Outer Loop:
• Compute a bounding box of the domain of the

implicit function

• Divide it into cubes of the same size (regular cube
grid)

• Execute “marching cube” algorithm in each subcube

• Output the union of all triangles generated

• Optionally: Use a vertex hash table to make the
mesh consistent (remove double vertices)

Marching Squares

Marching Squares:
• There is also a 2D version of the algorithm, called marching squares

• Same idea, but fewer cases

Ambiguities

There is a (minor) technical problem remaining:
• The triangulation can be ambiguous
• In some cases, different topologies are possible which are all locally

plausible:

• This is an undersampling artifact. At a sufficiently high resolution, this
cannot occur.

• Problem: Inconsistent application can lead to holes in the surface (non-
manifold solutions)

Ambiguities

Solution
• Always use the same solution pattern in ambiguous situations

• For example: Always connect diagonally
• This might yield topologically wrong results.

• But the surface is guaranteed to be a triangulated 2-manifold without holes and
with well-defined interior / exterior

• Better solution:
• Use higher resolution sampling (if possible)

• All of this (problem and solutions) also applies to the 3D case.

MC Variations

Empty space skipping:
• Marching cube uses an 𝑛3 voxel grid, which can become pretty expensive

• The surface intersects typically only 𝑂 𝑛2 voxels.

• If we roughly know where the surface might appear, we can restrict the
execution of the algorithm (and the evaluations of 𝑓 at the corners) to a
narrow band around the surface.

• Example: Particle methods – only extract within the support of the radial
basis functions.

MC Variations

Hierarchical marching cubes algorithm:
• One can use a hierarchical version of the marching cubes algorithms

using a balanced octree instead of a regular grid
• We need some refinement criterion to judge on where to subdivide

• This is application dependent (depends on the definition of 𝑓).

• However, we obtain many more cases to consider (which is painful to
derive).

Simple solution (common in practice):
• Extract high-resolution triangle mesh
• Then run mesh simplification (slower, but better quality).

Particle-Based Extraction

Particle-based method:
• This technique creates a set of points as output, which cover the

iso-surface.

• Algorithm:
• Start with a random point cloud (n points in a bounding volume)

• Now define forces that attract particles to the zero-level set.

• Also add some (weak) tangential repulsion to make them distribute
uniformly

Forces

Attraction “force”:
𝐹 1 𝑥𝑖 = 𝑚𝑖 𝛻𝑓 𝑥𝑖

2

Tangential repulsion force:

𝐹 2 𝑥𝑖 = ෍

𝑗≠𝑖

𝑘 𝑥𝑖 , 𝑥𝑗
𝑥𝑖 − 𝑥𝑗

𝑥𝑖 − 𝑥𝑗
2 𝐼 −

𝛻𝑓 𝑥𝑖
𝛻𝑓 𝑥𝑖

⋅
𝛻𝑓 𝑥𝑖
𝛻𝑓 𝑥𝑖

𝑇

Solution

Solution:
• We obtain a system of ordinary differential equations

• The ODE can be solved numerically

• Simplest technique: gradient decent (explicit Euler)
• Move every point by a fraction of the force vector

• Recalculate forces

• Iterate

• We have the solution if the system reaches a steady state

(nothing moves anymore, numerically)

Implicit Surfaces
Solid Modeling

Solid Modeling

We want to:
• Form basic volumetric primitives (spheres, cubes, cylinders) as implicit

functions (this is easy, no details)

• Compute Boolean combinations of these primitives:

Intersection, union, etc…

• Derive an implicit function from these operations

Boolean Operations

Actually, Boolean operations with implicit functions are simple:
• Given two signed implicit functions (negative inside) 𝑓𝐴, 𝑓𝐵 for objects 𝐴, 𝐵

• The Boolean combinations are given by:

• Union 𝐴 ∪ 𝐵: 𝑓𝐴∪𝐵 = min 𝑓𝐴, 𝑓𝐵

• Intersection 𝐴 ∩ 𝐵: 𝑓𝐴∩𝐵 = max 𝑓𝐴, 𝑓𝐵

• Complement ¬𝐴: 𝑓¬𝐴 = −𝑓𝐴

• Difference 𝐴\𝐵: 𝑓𝐴\𝐵 = min 𝑓𝐴, −𝑓𝐵

Hierarchical Modeling

This can be models as a CSG tree (constructive solid geometry):
• Leaf nodes are signed distance functions

• Inner nodes are Boolean operations

• Evaluation translates to an arithmetic expression

• Other operations:
• Deformation (apply vector field)

• Blending (combine surface smoothly)

Hierarchical Modeling

Rendering CSG hierarchies:
• Rendering is simple

• We get one compound signed implicit function

• We can extract the surface using marching cubes

• We can raytrace the surface using a numerical root
finding algorithm
• For example:

Newton scheme with voxel-based initialization

Implicit Surfaces
Data Fitting

Constructing Implicit Surfaces

Question: How to construct implicit surfaces?
• Basic primitives: Spheres, boxes etc … are (almost) trivial.

• We can construct implicit spline schemes by using 3D tensor product (or
tetrahedral) constructions of 3D Bezier or B-Spline functions

• Another option: Variational modeling

• In this chapter of this lecture: Fitting to data

Data Fitting

Data Fitting Problem:
• We are given a set of points

• We want to find an implicit surface that interpolates or approximates
these points

• This problem is ill-defined

• We need additional assumptions to make it well-defined

• We will look at three variants:
• Hoppe’s method / plane blending

• Thin-plate spline data matching

• MPU Implicits (multi-level partition of unity implicits)

Plane Blending Method

Initial data

Estimate normal

Signed distance func.

Marching cubes

Final mesh

Plane Blending Method

Initial data

Estimate normal

Signed distance func.

Marching cubes

Final mesh

unoriented normal:
total least squares plane fit (PCA)

in a 𝑘-nearest neighbors neighborhood

Plane Blending Method

Initial data

Estimate normal

Signed distance func.

Marching cubes

Final mesh

consistent orientation:
region growing, flip normal if angle > 180°
pick most similar normal next in each step

Plane Blending Method

Initial data

Estimate normal

Signed distance func.

Marching cubes

Final mesh

consistent orientation:
blend between signed distance functions of

planes associated with each point

Plane Blending Method

Initial data

Estimate normal

Signed distance func.

Marching cubes

Final mesh

signed distance function:
plane blending (next slide)

Normal Constraints

Basic Idea:

• Each point defines an oriented plane and a signed distance function

• To obtain a composite distance field in space:
Blend these distance functions with weights from a kernel (Gaussian, or uniform B-
Spline)

Normal Constraints

Basic Idea:

 (partition of unity weights)𝑓 𝒙 =
σ𝑖=1
𝑛 𝒏𝑖 , 𝒙 − 𝒙𝑖 𝑤 𝒙 − 𝒙𝑖

σ𝑖=1
𝑛 𝑤 𝒙 − 𝒙𝑖

Plane Blending Method

Initial data

Estimate normal

Signed distance func.

Marching cubes

Final mesh

Plane Blending Method

Initial data

Estimate normal

Signed distance func.

Marching cubes

Final mesh

Plane Blending Method

Initial data

Estimate normal

Signed distance func.

Marching cubes

Final mesh

Thin-Plate Spline Data Matching

Agenda:
• Use radial basis functions

• Use a globally supported basis that guarantees
smoothness

• Place radial basis functions at the input points

• Place two more in normal and negative normal direction

• Prescribe values +1,0,-1

• Solve a linear system to meet these constraints

Types of Radial Basis Functions

Typical choices for radial basis functions:
• Globally supported functions:

• Thin plate spline basis functions:

𝑥 − 𝑥0
2 ln 𝑥 − 𝑥0 (2D), 𝑥 − 𝑥0

3 (3D)

• These functions guarantee minimal integral second derivatives

• Problem: evaluation
• Every basis function interacts with each other one

• This creates a dense 𝑛 × 𝑛 linear system

• One can use a fast multi pole method that clusters far away nodes in bigger
octree boxes

• This gives 𝑂 log 𝑛 interactions per particle, overall 𝑂 𝑛 log𝑛 interactions

Examples

Carr et al. Reconstruction and representation of 3D
objects with Radial Basis Functions, SIGGRAPH 2001

Alternative

Alternative:
• Use locally supported basis functions (e.g. B-Splines)

• Employ an additional regularization term to make the solution smooth.

• Optimize the energy function

𝐸 𝜆 =෍

𝑖=1

𝑛

𝑓 𝒙𝑖
2 + 𝜇 න

Ω

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
+

2𝜕2

𝜕𝑥𝜕𝑦
+

2𝜕2

𝜕𝑦𝜕𝑧
+

2𝜕2

𝜕𝑥𝜕𝑧
𝑓 𝒙

2

𝑑𝒙

with 𝑓 𝒙 = σ𝑖=1
𝑚 𝜆𝑖𝑏 𝒙 − 𝒙𝑗

• The critical point is the solution to a linear system

MPU Implicits

Multi-level partition of unity implicits:
• Hierarchical implicit function approximation

• Given: data points with normal

• Computes: hierarchical approximation of the signed
distance function

MPU Implicits

Multi-level partition of unity implicits:
• Octree decomposition of space

• In each octree cell, fit an implicit quadratic
function to points
• 𝑓 𝒙𝑖 = 0 at data points

• Additional normal constraints

• Stopping criterion:
• Sufficient approximation accuracy

(evaluate 𝑓 at data points to calculate distance)

• At least 15 points per cell.

MPU Implicits

Multi-level partition of unity implicits:
• This gives an adaptive grid of local implicit

function approximations

• Problem: How to define a global implicit function?

• Idea: Just blend between local approximants using
a windowing function

MPU Implicits

Multi-level partition of unity implicits:
• Windowing function:

• Use smooth windowing function 𝑤

• B-splines / normal distribution

• Original formulation: quadratic tensor product B-
spline function, support = 1.5 × cell diagonal

• Renormalize to form partition of unity:

𝑓 𝒙 =
σ𝑖=1
𝑛 𝑤 𝒙 − 𝒙𝑖 𝑓𝑖 𝒙

σ𝑖=1
𝑛 𝑤 𝒙 − 𝒙𝑖

MPU Implicits

Multi-level partition of unity implicits:
• Sharp features:

• If a leaf cell with a few points has strongly varying normal,
this might be a sharp feature.

• Multiple functions can be fitted to parts of the data

• Boolean operations to obtain composite distance field

Examples

Ohtake et al. Multi-level Partition of
Unity Implicits, SIGGRAPH 2003

Parameterization

陈仁杰
renjiec@ustc.edu.cn

http://staff.ustc.edu.cn/~renjiec

Computer Aided Geometric Design
Fall Semester 2024

mailto:renjiec@ustc.edu.cn
http://staff.ustc.edu.cn/~renjiec

Subdivision Surfaces

Problem with Spline Patches
• A continuous tensor product spline surface is only defined on a regular

grid of quads as parametrization domain

• Thus, the topology of the object is restricted

• Assembling multiple parameter domains to a single surface is tedious,
hard to get continuity guarantees

• Handling trimming curves is not that straightforward

Question: can we do better?

Subdivision Surfaces

Wish list:
• Provide a very coarse representation of the geometry

• Obtain a fine and smooth representation

• Preferably by means of a simple set of rules which can be recursively
applied (subdivision rules or subdivision scheme)

Subdivision Surfaces

Bigger goals:
• Simplify the creation of smooth refined geometric models

(especially in feature film industry)

• What’s lost? Parametric representation …

Surface Parameterization

5

• Geometric intuition: 3D surface unfolds into 2D plane

• Mathematical essence: embedding/mapping of 3D surface in 2D plane

-Construct one-to-one correspondence between surface and plane area

- 3D surface is essentially 2D: 2D manifold

(𝑥, 𝑦, 𝑧)
(𝑢, 𝑣)

𝑓: 𝑅3 → 𝑅2

2D Manifold Surface in ℝ𝟑

A surface 𝑆 in ℝ3 has an intrinsic dimension of 2D – a
patch Ω ∈ ℝ2 is embedded into ℝ3 (each point in Ω is
assigned a position in ℝ3)

Parameter domain Embedded (ambient) space

Parametric Surfaces

Parameterization: flatten the surface into a plane

• Each 3D vertex (𝑥,𝑦,𝑧) corresponds to a 2D point (𝑢,𝑣)
• (𝑢,𝑣) is called the parameter of (𝑥,𝑦,𝑧) (intrinsic dimension of the 2D

manifold surface)

Parameterization is the most basic problem in
geometric processing

• Provides a 2D parameter for each point on a 3D surface

• Intrinsic dimension parameter

• Processing high-dimensional problems in low dimensions

reduces complexity

• Dimension reduction

• Related problems between 3D surfaces can be processed

through parameterized space

Application of surface parameterization-1

10

• Map making

Application of surface parameterization-2

11

• Surface mapping: storing and expressing various information on the
surface

- texture mapping, normal mapping, displacement mapping, color (albedo), material
(material/BRDF)...

Application of surface parameterization-3

12

• Texture Atlas

- Surface painting

Application of surface parameterization-4

13

• Surface Fitting B-spline (NURBS/T-spline) surface fitting of 3D point cloud

𝑓: 𝑅2 → 𝑅3

ቐ

𝑥 = 𝑥(𝑢, 𝑣)
𝑦 = 𝑦(𝑢, 𝑣)
𝑧 = 𝑧(𝑢, 𝑣)

(𝑢, 𝑣) ∈ 0,1 × [0,1](𝑢𝑖 , 𝑣𝑖)

Application of surface parameterization-5

14

• Surface rendering

-Virtual textures

-Virtual geometry

-Mipmap

- LOD

Application of surface parameterization-6

15

• The basis for most geometry processing (basic problems)
-Visualization

-Compression

- Transmission

- Simplification

-Matching

- Remeshing

- Reconstruction

- Repairing

- Texture synthesis

- Rendering

-Animation

-Morphing

-…

Mapping the boundary onto a convex polygon in the plane

Fixing the boundary of the mesh onto

an unit circle an unit square

[Floater97]

Tutte’s Method: Why it Works

Theorem [Tutte63], [Maxwel1864] :
• If G=<V,E> is a 3-connected planar graph (triangular mesh) then any

barycentric embedding provides a valid parameterization

If the boundary lies on a convex polygon, the

triangles in the Tutte Embedding must not be flipped!

Floater parametrization

• Uniform parametrization

• Shape-preserving parametrization

• How to judge which parameterization method is better?

[Floater 97’]

GAMES Course 301: Surface parameterization

19
https://www.bilibili.com/video/BV18T411P7hT

https://www.bilibili.com/video/BV18T411P7hT

	cagd_lec00
	cagd_lec0a
	cagd_lec01
	cagd_lec02
	cagd_lec03
	cagd_lec04
	Slide 1: Differential Geometry of Curves
	Slide 2: Parametric Curves
	Slide 3: Parametric Curves
	Slide 4: Parametric Curves
	Slide 5: Parametric Curves: Examples
	Slide 6: The velocity vector
	Slide 7: Regular parametric curves
	Slide 8: Examples: regularity
	Slide 9: Examples: cusps
	Slide 10: Examples: cusps
	Slide 11: Change of parameterization
	Slide 12: Change of parameterization
	Slide 13: Geometric observations
	Slide 14: Geometric observations
	Slide 15: Geometric observations
	Slide 16: Geometric observations
	Slide 17: Geometric observations
	Slide 18: Geometric observations
	Slide 19: The Frenet frame
	Slide 20: The Frenet frame and associated planes
	Slide 21: Curvature
	Slide 22: Curvature
	Slide 23: Curvature for regular parameterization
	Slide 24: Examples:
	Slide 25: Special case: planar curves
	Slide 26: Examples
	Slide 27: Curvature in practice
	Slide 28: Curvature in practice
	Slide 29: Curvature and Road Construction
	Slide 30: Clothoide, Euler Spiral 羊角螺线
	Slide 31: Torsion for regular parameterization
	Slide 32: Torsion
	Slide 33: Measuring lengths on curves
	Slide 34: Measuring lengths on curves
	Slide 35: Measuring lengths on curves
	Slide 36: Arc-length parametrized curves
	Slide 37: Arc length parametrization
	Slide 38: Arc length parametrization
	Slide 39: Reparameterization by arc length
	Slide 40: Examples
	Slide 41: Examples
	Slide 42: Examples
	Slide 43: Examples
	Slide 44: Examples
	Slide 45: Examples
	Slide 46: Geometric consequences of Arc length parameterization
	Slide 47: Geometric consequences of Arc length parameterization
	Slide 48: Curvature again
	Slide 49: Further mathematical formulations: Frenet Curves
	Slide 50: Frenet Curves
	Slide 51: Frenet Curves
	Slide 52: Frenet Curves
	Slide 53: Gram-Schmidt Process: Construction of Orthonormal Bases
	Slide 54: Planar Curves
	Slide 55: Osculating circle
	Slide 56: Properties
	Slide 57: Fundamental Theorem
	Slide 58: Arc-length Derivative
	Slide 59: Compute the signed curvature
	Slide 60: Space Curves
	Slide 61: Frenet Frame of Space Curves
	Slide 62: Frenet Frame of Space Curves
	Slide 63: Frenet Frame of Space Curves
	Slide 64: Summary of relations
	Slide 65: Summary of relations
	Slide 66: Special case: planar curves

	cagd_lec05
	Slide 1: Bézier Splines
	Slide 2: Recap
	Slide 3: Recap
	Slide 4: Recap
	Slide 5: Recap
	Slide 6: Towards Bézier Splines
	Slide 7: Towards Bézier Splines
	Slide 8: Bézier Splines
	Slide 9: Parametric Continuity
	Slide 10: Parametric Continuity
	Slide 11: Parametric Continuity
	Slide 12: Continuity
	Slide 13: Geometric continuity:
	Slide 14: Geometric continuity:
	Slide 15: Bézier Splines
	Slide 16: Bézier spline curves
	Slide 17: Bézier spline curves
	Slide 18: Bézier Curve
	Slide 19: Bézier spline curves
	Slide 20: Bézier Splines
	Slide 21: Bézier spline curves
	Slide 22: Bézier spline curves
	Slide 23: Bézier spline curves
	Slide 24: Bézier Splines
	Slide 25: Choosing the Degree
	Slide 26: Cubic Splines
	Slide 27: Cubic Splines
	Slide 28: Cubic Splines
	Slide 30: Bézier Splines
	Slide 31: Bézier Spline Continuity
	Slide 32: Bézier Spline Continuity
	Slide 33: Bézier Spline Continuity
	Slide 34: Continuity
	Slide 35: Continuity for Bézier Splines
	Slide 36: In Practice
	Slide 37: Bézier spline curves
	Slide 38: Bézier spline curves
	Slide 39: Bézier spline curves
	Slide 40: Bézier spline curves
	Slide 41: Bézier spline curves
	Slide 42: Bézier Splines
	Slide 43: Cubic Bézier Splines
	Slide 44: Cubic Bézier Splines
	Slide 45: Cubic Bézier Splines
	Slide 46: Bézier Splines
	Slide 47: Bézier spline curves: End conditions
	Slide 48: Bézier spline curves: End conditions
	Slide 49: Bézier spline curves: End conditions
	Slide 50: End conditions: Examples
	Slide 51: End conditions: Examples
	Slide 52: Bézier Splines
	Slide 53: Bézier spline curves: Parameterization
	Slide 54: Bézier spline curves: Parameterization
	Slide 55: Bézier spline curves: Parameterization
	Slide 56: Bézier spline curves: Parameterization
	Slide 57: Bézier spline curves: Parameterization
	Slide 58: Bézier spline curves: Parameterization
	Slide 59: Bézier spline curves: Parameterization
	Slide 60: Bézier Splines
	Slide 61: Closed cubic Bézier spline curves
	Slide 62: Closed cubic Bézier spline curves
	Slide 63: Examples
	Slide 64: Examples
	Slide 65: Examples

	cagd_lec06
	Slide 1: B-Splines
	Slide 2
	Slide 3: Motivation
	Slide 4: Some history
	Slide 5: Repeated linear interpolation
	Slide 6: Repeated linear interpolation
	Slide 7: Repeated linear interpolation
	Slide 8: De Boor Recursion: uniform case
	Slide 9: B-spline curves: general case
	Slide 10: Example
	Slide 11: Example
	Slide 12: Example
	Slide 13: Key Ideas
	Slide 14: Shifted Basis Functions
	Slide 15: Basis properties
	Slide 16: B-spline curves
	Slide 17: Example
	Slide 18: B-spline curves
	Slide 19: B-spline curves
	Slide 20: B-spline curves
	Slide 21: B-spline curves
	Slide 22: B-spline curves
	Slide 23: B-spline curves
	Slide 24: B-spline curves properties
	Slide 25: B-spline curves properties
	Slide 26: B-spline curves properties
	Slide 27: B-spline curves properties
	Slide 28: B-spline curves
	Slide 29: The de Boor algorithm
	Slide 30: The de Boor algorithm
	Slide 31: B-spline curves
	Slide 32: B-spline curves: interpolation
	Slide 33: B-spline curves: interpolation
	Slide 34: B-spline curves: interpolation
	Slide 35: B-spline curves: interpolation
	Slide 36: B-spline curves: interpolation
	Slide 37: B-spline curves: interpolation
	Slide 38: B-spline curves: interpolation
	Slide 39: B-spline curves: interpolation
	Slide 40: Bézier splines to B-splines
	Slide 41: Bézier splines to B-splines
	Slide 42: Bézier splines to B-splines
	Slide 43: Bézier splines to B-splines
	Slide 44: Bézier splines to B-splines
	Slide 45: Summary of Bézier and B-spline curves
	Slide 46: Summary of Bézier and B-spline curves
	Slide 47: Summary of Bézier and B-spline curves
	Slide 48: Summary of Bézier and B-spline curves
	Slide 49: B-splines
	Slide 50: B-spline curves: general case (reminder)
	Slide 51: B-spline basis evaluation: ex. 1
	Slide 52: B-spline basis evaluation: ex. 1
	Slide 53: B-spline basis evaluation: ex. 1
	Slide 54: B-spline basis evaluation: ex. 1
	Slide 55: B-spline basis evaluation: ex. 1
	Slide 56: B-spline basis evaluation: ex. 2
	Slide 57: B-spline basis evaluation: ex. 2
	Slide 58: B-spline basis evaluation: ex. 2
	Slide 59: B-spline basis evaluation: ex. 2
	Slide 60: B-spline basis evaluation: ex. 2
	Slide 61: de Boor algorithm (reminder)
	Slide 62: de Boor algorithm: ex. 1
	Slide 63: de Boor algorithm: ex. 1
	Slide 64: de Boor algorithm: ex. 1
	Slide 65: de Boor algorithm: ex. 1
	Slide 66: de Boor algorithm: ex. 2
	Slide 67: de Boor algorithm: ex. 1

	cagd_lec07
	Slide 1: Blossoming and Polar Forms Bézier Splines and B-Splines Revisited
	Slide 2: A Short Step Back
	Slide 3: Matrix Form
	Slide 4: Format Conversion
	Slide 5: Format Conversion
	Slide 6: Polar Forms & Blossoms
	Slide 7: Affine Combinations
	Slide 8: Affine Combinations
	Slide 9: Affine Combinations
	Slide 10: Formalizing the Idea
	Slide 11: Polar Forms
	Slide 12: Polar Forms
	Slide 13: Properties
	Slide 14: Properties
	Slide 15: Properties
	Slide 16: Properties
	Slide 17: Properties
	Slide 18: Generalizations
	Slide 19: Generalizations
	Slide 20: Generalizations
	Slide 21: Properties
	Slide 22: Example
	Slide 23: Continuity Condition
	Slide 24: Continuity Condition
	Slide 25: Raising the Degree
	Slide 26: Raising the Degree
	Slide 27: Polars and Control Points
	Slide 28: Polars and Control Points
	Slide 29: Polar Forms & Blossoms
	Slide 30: De Casteljau algorithm (from earlier)
	Slide 31: De Casteljau Algorithm
	Slide 32: Key observation
	Slide 33: De Castljau Algorithms for Bézier Curves
	Slide 34: De Castljau Algorithms for Bézier Curves
	Slide 35: De Castljau Algorithms for Bézier Curves
	Slide 36: De Casteljau (Polar forms)
	Slide 37: Analysis
	Slide 38: Analysis
	Slide 39: Analysis
	Slide 40: Analysis
	Slide 41: Analysis
	Slide 42: Generalized Parameter Intervals
	Slide 43: Generalized Parameter Intervals
	Slide 44: Multiple Segments
	Slide 45: More Observations
	Slide 46: More Observations
	Slide 47: More Observations
	Slide 48: Observations
	Slide 49: More Bézier Curve Properties…
	Slide 50: Degree Elevation
	Slide 51: Degree Elevation
	Slide 52: Change of basis, the easy way
	Slide 53: Change of basis, the easy way
	Slide 54: Example
	Slide 55: Example
	Slide 56: Polar Forms & Blossoms
	Slide 57: B-Spline Curves in Polar Form
	Slide 58: B-Spline Curves in Polar form
	Slide 59: De Boor Algorithm in Polar Form
	Slide 60: De Boor Algorithm in Polar Form
	Slide 61: De Boor Algorithm in Polar form
	Slide 62: Key observation
	Slide 63: De Boor Alg. In Polar form
	Slide 64: De Boor Algorithm in Polar Form
	Slide 65: B-Splines in Polar form
	Slide 66: B-Splines in Polar form
	Slide 67: B-Splines in Polar form
	Slide 68: Example: General Case
	Slide 69: Example: General Case
	Slide 70: Example: General Case
	Slide 71: Example: General Case
	Slide 72: Knot Insertion
	Slide 73: Knot Insertion
	Slide 74: Polar Forms & Blossoms
	Slide 75: Structure
	Slide 76: Structure

	cagd_lec08
	Slide 1: Rational Spline Curves Projective Geometry · Rational Bézier Curves · NURBS
	Slide 2: Some Projective Geometry
	Slide 3: Projective Geometry
	Slide 4: Homogeneous Coordinates
	Slide 5: Translations
	Slide 6: Normalization
	Slide 7: Notation
	Slide 8: Perspective Projections
	Slide 9: Perspective Projection
	Slide 10: Perspective Projection
	Slide 11: Homogenous Transformation
	Slide 12: Formal Definition
	Slide 13: Question
	Slide 14: Rational Curves
	Slide 15: Quadrics and Conics
	Slide 16: Modeling Wish List
	Slide 17: Conical Sections
	Slide 18: Conic Sections
	Slide 19: Implicit Form
	Slide 20: Quadrics & Conics
	Slide 21: Shapes of Quadratic Polynomials
	Slide 22: The Iso-Lines: Quadrics
	Slide 23: Characterization
	Slide 24: Cases
	Slide 25: Cases
	Slide 26: Polynomial Curves & Conics
	Slide 27: Projections of Parabolas
	Slide 28: Projected Parabola
	Slide 29: Parameterizing Conics
	Slide 30: Parameterizing Parabolas
	Slide 31: Circle
	Slide 32: Circle
	Slide 33: Circle
	Slide 34: Hyperbolas
	Slide 35: Rational Bézier Curves
	Slide 36: Rational Bézier Curves
	Slide 37: More Convenient Notation
	Slide 38: Properties
	Slide 39: Rational Bézier Curves
	Slide 40: Rational Bézier Curves
	Slide 41: Rational de Casteljau Algorithm
	Slide 42: Rational de Casteljau Algorithm
	Slide 43: Influence of the Weights
	Slide 44: Influence of the Weights
	Slide 45: Quadratic Bézier Curves
	Slide 46: Standard Form (or Normal Form)
	Slide 47: Standard Form
	Slide 48: Remark: Why this reparameterization?
	Slide 49: Standard Form
	Slide 50: Standard Form
	Slide 51: Standard Form
	Slide 52: Standard Form
	Slide 53: Standard Form
	Slide 54: Standard Form
	Slide 55: Standard Form
	Slide 56: Standard Form
	Slide 57: Illustration
	Slide 58: Conversion to Implicit Form
	Slide 59: Conversion to Implicit Form
	Slide 60: Conversion to Implicit Form
	Slide 61: Conversion to Implicit Form
	Slide 62: Conversion to Implicit Form
	Slide 63: Conversion to Implicit Form
	Slide 64: Classification
	Slide 65: Classification
	Slide 66: Towards Dual Conic Sections
	Slide 67: Dual Conic Sections
	Slide 68: Dual Conic Sections
	Slide 69: Dual Conic Sections
	Slide 70: Dual Conic Sections
	Slide 71: Rational Bézier curves
	Slide 72: Circle in Bézier Form
	Slide 73: Circle in Bézier Form
	Slide 74: Circle in Bézier Form
	Slide 75: Circle in Bézier Form
	Slide 76: Circle in Bézier Form
	Slide 77: Result: Circle in Bézier Form
	Slide 78: General Circle Segments
	Slide 79: Properties, Remarks
	Slide 80: Farin Points
	Slide 81: Farin Points
	Slide 82: Farin Points
	Slide 83: Farin Points
	Slide 84: Rational Curves: Rational Bézier Curves
	Slide 85: Rational Curves: Rational Bézier Curves
	Slide 86: Derivatives
	Slide 87: Derivatives
	Slide 88: NURBS
	Slide 89: NURBS
	Slide 90: NURBS

	cagd_lec09
	Slide 1: Spline Surfaces Tensor Product Surfaces · Total Degree Surfaces
	Slide 2
	Slide 3: Spline Surfaces
	Slide 4: Spline Surfaces
	Slide 5: Tensor Product Surfaces
	Slide 6: Tensor Product Surfaces
	Slide 7: Tensor Product Surfaces
	Slide 8: Monomial Example
	Slide 9: Example
	Slide 10: Tensor Product Surfaces
	Slide 11: Properties
	Slide 12: Properties
	Slide 13: Partial Derivatives
	Slide 14: Partial Derivatives
	Slide 15: Partial Derivatives
	Slide 16: Normal Vectors
	Slide 17: Tensor Product Surfaces
	Slide 18: Tensor Product Bézier Surfaces
	Slide 19: Some formulas for this setup
	Slide 20: Some formulas for this setup
	Slide 21: Some formulas for this setup
	Slide 22: Bézier Patches
	Slide 23: Bézier Patches
	Slide 24: Bézier Patches
	Slide 25: Continuity Conditions
	Slide 26: C to the bold 0 Continuity
	Slide 27: C to the bold 1 Continuity
	Slide 28: C to the bold 1 Continuity
	Slide 29: Polars & Blossoms
	Slide 30: Short Summary
	Slide 31: Bézier Control Points
	Slide 32: de Casteljau Algorithm
	Slide 33: Tensor Product Surfaces
	Slide 34: B-Spline Patches
	Slide 35: B-Spline Patches
	Slide 36: Illustration
	Slide 37: B-Spline Patches
	Slide 38: Tensor Product Surfaces
	Slide 39: Rational Patches
	Slide 40: Rational Patch
	Slide 41: Rational Patch
	Slide 42: Remark: Rational Patches
	Slide 43: Surfaces of Revolution
	Slide 44: Surfaces of Revolution
	Slide 45: Surfaces of Revolution
	Slide 46: Surfaces of Revolution
	Slide 47: Surfaces of Revolution
	Slide 48: Surfaces of Revolution
	Slide 49: Surface of Revolution
	Slide 50: Surface of Revolution
	Slide 51: Surface of Revolution
	Slide 52: Surface of Revolution
	Slide 53: Remark
	Slide 54: Benefit
	Slide 55: Parametrization Restrictions
	Slide 56: Curves on Surfaces, trimmed NURBS
	Slide 57: Curves on Surfaces, trimmed NURBS
	Slide 58: Curves-on-Surfaces (CONS)
	Slide 59: Curves-on-Surfaces (CONS)
	Slide 60: Curves-on-Surfaces (CONS)
	Slide 61: General Shapes
	Slide 62: Total Degree Surfaces
	Slide 63: Bézier Triangles
	Slide 64: Blossoms for Total Degree Surfaces
	Slide 65: Example
	Slide 66: Barycentric Coordinates
	Slide 67: Barycentric Coordinates
	Slide 68: Barycentric Coordinates
	Slide 69: Bézier Triangles: Overview
	Slide 70: Plugging in the Barycentric Coord’s
	Slide 71: Plugging in the Barycentric Coord’s
	Slide 72: Example
	Slide 73: De Casteljau Algorithm
	Slide 74: Bernstein Form
	Slide 75: Continuity
	Slide 76: Continuity
	Slide 77: Continuity
	Slide 78: Continuity
	Slide 79: Continuity
	Slide 80: Continuity
	Slide 81: Continuity
	Slide 82: Continuity
	Slide 83: Continuity

	cagd_lec10
	Slide 1: Subdivision Curves and Surfaces
	Slide 2: Subdivision Surfaces
	Slide 3: Subdivision Surfaces
	Slide 4: Subdivision Surfaces
	Slide 5: Basic Scheme
	Slide 6: Basic Scheme
	Slide 7: Subdivision Surfaces
	Slide 8: Subdivision Schemes
	Slide 9: Subdivision Surfaces – History
	Slide 10: Subdivision Surfaces and the Movies
	Slide 11: Curves Revisited
	Slide 12: Matrix Notation
	Slide 13: Matrix Notation
	Slide 14
	Slide 15: Chaikin’s Corner Cutting
	Slide 16: Chaikin’s Corner Cutting
	Slide 17: Chaikin’s Corner Cutting
	Slide 18: Chaikin’s Corner Cutting
	Slide 19: Chaikin’s Corner Cutting
	Slide 20: Cubic B-Spline Subdivision Scheme
	Slide 21: Lane-Riesenfeld subdivision
	Slide 22: Lane-Riesenfeld subdivision
	Slide 23: Lane-Riesenfeld subdivision
	Slide 24: Lane-Riesenfeld subdivision
	Slide 25: Separate Splitting Step
	Slide 26: Separate Splitting Step
	Slide 27: Cubic Subdivision
	Slide 28: General Formula:
	Slide 29: Spectral Convergence Analysis
	Slide 30: The Spectral Limit Trick
	Slide 31: Computing the Limit
	Slide 32: The Local Subdivision Matrix
	Slide 33: Local Subdivision Matrix
	Slide 34: To the Limit…
	Slide 35: To the Limit…
	Slide 36: To the Limit…
	Slide 37: To the Limit, in General
	Slide 38: Necessary Condition
	Slide 39: Affine Invariance
	Slide 40: Affine Invariance
	Slide 41: Summary
	Slide 42: B-Spline Subdivision Surfaces
	Slide 43: B-Spline Subdivision Surfaces
	Slide 44: B-Spline Subdivision Surfaces
	Slide 45: B-Spline Subdivision Surfaces
	Slide 46: B-Spline Subdivision Surfaces
	Slide 47: B-Spline Subdivision Surfaces
	Slide 48: B-Spline Subdivision Surfaces
	Slide 49: B-Spline Subdivision Surfaces
	Slide 50: B-Spline Subdivision Surfaces
	Slide 51: B-Spline Subdivision Surfaces
	Slide 52: Subdivision and Averaging Masks
	Slide 53: Subdivision and Averaging Masks
	Slide 54: Remaining Problems
	Slide 55: Here is the answer…
	Slide 56: Here is the answer…
	Slide 57: Here is the answer…
	Slide 58: Boundary Rules
	Slide 59: Boundary Rules
	Slide 60: Catmull-Clark in short
	Slide 61: Catmull-Clark scheme
	Slide 62: Other Subdivision Schemes
	Slide 63: Subdivision Zoo
	Slide 64: Comparisons
	Slide 65: Triangular Subdivision
	Slide 66: Loop Subdivision
	Slide 67: Butterfly Scheme

	cagd_lec11
	Slide 1: Implicit Surfaces
	Slide 2: Implicit Surfaces
	Slide 3: Modeling Zoo
	Slide 4: Implicit Functions
	Slide 5: The Implicit Function Theorem
	Slide 6: This means
	Slide 7: Implicit Functions Types
	Slide 8: Implicit Functions Types
	Slide 9: Squared Distance Function
	Slide 10: Squared Distance Function
	Slide 11: Smoothness
	Slide 12: Differential Properties
	Slide 13: Differential Properties
	Slide 14: Computing Volume Integrals
	Slide 15: Computing Surface Integrals
	Slide 16: Surface Integral
	Slide 17: Smoothed Functions
	Slide 18: Implicit Surfaces
	Slide 19: Representing Implicit Functions
	Slide 20: Discretization
	Slide 21: Regular Grids
	Slide 22: Regular Grids
	Slide 23: Fast Marching Method
	Slide 24: Nearest Neighbors
	Slide 25: Eikonal Equation
	Slide 26: Fast Marching
	Slide 27: Regular Grids of Basis Functions
	Slide 28: Regular Grids of Basis Functions
	Slide 29: Adaptive Grids
	Slide 30: Particle Methods
	Slide 31: Particle Methods
	Slide 32: Particle Methods
	Slide 33: Types of Radial Basis Functions
	Slide 34: Pros & Cons
	Slide 35: Implicit Surfaces
	Slide 36: Iso-Surface Extraction
	Slide 37: Algorithms
	Slide 38: Marching Cubes
	Slide 39: Marching Cubes
	Slide 40: Triangulation
	Slide 41: Vertex Placement
	Slide 42: Outer Loop
	Slide 43: Marching Squares
	Slide 44: Ambiguities
	Slide 45: Ambiguities
	Slide 46: MC Variations
	Slide 47: MC Variations
	Slide 48: Particle-Based Extraction
	Slide 49: Forces
	Slide 50: Solution
	Slide 51: Implicit Surfaces
	Slide 52: Solid Modeling
	Slide 53: Boolean Operations
	Slide 54: Hierarchical Modeling
	Slide 55: Hierarchical Modeling
	Slide 56: Implicit Surfaces
	Slide 57: Constructing Implicit Surfaces
	Slide 58: Data Fitting
	Slide 59: Plane Blending Method
	Slide 60: Plane Blending Method
	Slide 61: Plane Blending Method
	Slide 62: Plane Blending Method
	Slide 63: Plane Blending Method
	Slide 64: Normal Constraints
	Slide 65: Normal Constraints
	Slide 66: Plane Blending Method
	Slide 67: Plane Blending Method
	Slide 68: Plane Blending Method
	Slide 69: Thin-Plate Spline Data Matching
	Slide 70: Types of Radial Basis Functions
	Slide 71: Examples
	Slide 72: Alternative
	Slide 73: MPU Implicits
	Slide 74: MPU Implicits
	Slide 75: MPU Implicits
	Slide 76: MPU Implicits
	Slide 77: MPU Implicits
	Slide 78: Examples

	cagd_lec12
	Slide 1: Parameterization
	Slide 2: Subdivision Surfaces
	Slide 3: Subdivision Surfaces
	Slide 4: Subdivision Surfaces
	Slide 5: Surface Parameterization
	Slide 6: 2D Manifold Surface in double-struck cap R to the bold 3
	Slide 7: Parametric Surfaces
	Slide 8: Parameterization: flatten the surface into a plane
	Slide 9: Parameterization is the most basic problem in geometric processing
	Slide 10: Application of surface parameterization-1
	Slide 11: Application of surface parameterization-2
	Slide 12: Application of surface parameterization-3
	Slide 13: Application of surface parameterization-4
	Slide 14: Application of surface parameterization-5
	Slide 15: Application of surface parameterization-6
	Slide 16: Mapping the boundary onto a convex polygon in the plane
	Slide 17: Tutte’s Method: Why it Works
	Slide 18: Floater parametrization
	Slide 19: GAMES Course 301: Surface parameterization

