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Chapter 1

Elliptic functions

1 Simply periodic functions

Notations

• region=domain=open connected subset of C = {x+ iy : x, y ∈ C} endowed the Euclidean
topology

• Let Ω
f−→ C be meromorphic,where Ω is a region.Assume that Ω is left invariant under the

translation z 7→ z + ω,where ω ∈ C∗ = C\ {0}

Suppose that f(z + ω) = f(z),∀z ∈ Ωi.e. f has period ω. Then nω(n ∈ Z) are also periods of
f .

Call f a simply periodic function on Ω

Example 1.1. Ω = C,ez has period 2πi,cos z and sin z have period 2π.

1.1 Representation by exp

Define Ω′ =
{
ζ ∈ C : ζ = e 2πiz

ω , z ∈ Ω
}

Example 1.2. • C e
2πi
ω−→ C∗

• Ω =

{
a < =2πz

ω
< b

}
e
2πi
ω−→ Ω′ =

{
e−b < |ζ| < e−a

}
Observation: Use notations as above,∃ a unique mero fun Ω′ F−→ C s.t.

(1) f(z) = F (e 2πiz
ω )

��...

Take ζ ∈ Ω′,∃ ”unique” z ∈ Ω up to translation s.t. ζ = e 2πiz
ω It follows from that ω is period

of f
Conversely,giver a mero fun F : Ω′ −→ C , we obtain by (1) a periodic mero func Ω

f−→ C

5
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1.2 Fourier development

Assumption: Suppose that F is holomorphic in annulus {r1 < |ζ| < r2} (0 ⩽ r1 < r2 ⩽ +∞)

Then F has its Laurent development in the annulus,

F (ζ) =
+∞∑

n=−∞

cnζ
n, cn =

1

2πi

∫
|ζ|=r

F (ζζ−n−1)dζ(r1 < r < r2)

Hence we obtain the complex Fourier development of f(z)

f(z) =
∞∑

n=−∞

cne 2πiz
ω , cn =

1

ω

∫ a+ω

a

f(z)e−2πinz
ω dz

in the corresponding strip
{
− ln r2 < =2πz

ω
< − ln r1

}
Example 1.3. As Ω = C,Ω′ = C∗, the complex Fourier development of f holds everywhere.

1.3 Functions of finite order

Let Ω = C and Ω′ = C∗, F : Ω′ mero−→ C has at most poles at 0,∞
Then F is rational,i.e.

F =
polynomial

polynomial

with degree d. We say f is finite order, equal to d = degF .
Define a congruent relation z ∼ z + ω,which is an equivalence relation on C

The set of congruent classes can be identified with the periodic stripS =

{
0 ⩽ =2πz

ω
< 2π

}
By the commutative diagram

C C

C∗

f

f is of oerder d, assumes each c ∈ C\ {F (0), F (∞)}
at d different congruent classes.
Since f(z) → F (0) as = z

ω
→ −∞; f(z) → F (∞) as Im z

ω
→ +∞

we can understand that f assums both F (0) and F (∞) with multiplicity d.
Since the strip S contains only one representative of each congruent class, f assumes each c ∈ C

d times in S,with a special case for F (0) and F (∞).
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2 Doubly perodic functions

Definition 2.1. Elliptic functions are mero functions with two R-linear independent periods on C.

2.1 The period module(Z module)

Let C f−→ C be mero and M the set of periods of f .
M may be {0}. If ω1, ω2 ∈M then n1ω1 + n2ω2 ∈M∀n1, n2 ∈ Z. Hence M is a Z-module
观察：假设 f 不是常值则 M 离散

Call M the period module of f .

Theorem 2.1 (Classification of period modules). Assume f non const.Then M can be classified
as: {0},Zω(ω ∈ C∗),Zω1 ⊕ Zω2(

ω2

ω1

/∈ R)

证明. Assume M 6= {0}.
由离散性，可取一个以原点为圆心，r 为半径的闭圆盘，使得其中有有限个 M 中元素。

Since M is discrete,∃0 6= ω1 ∈M s.t. |ω1| = ∞ω ̸=0|ω|
Assume M ⊋ Zω1 Take ω2 ∈M\Zω1 s.t.

|ω2| = ∞ω∈M\Zω1
|ω|

Then ω2

ω1

/∈ R,otherwies, ∃n ∈ Z,n <
ω2

ω1

< n + 1. Then 0 < |nω1 − ω2| < |ω1|, contradict the
definition of ω1

The problem is reduced to the following claim
CLAIM: M = Zω1 ⊕ Zω2

Since ω1

ω1

/∈ R,
∣∣∣∣∣ω1 ω2

ω̄1 ω̄2

∣∣∣∣∣
∀ω ∈ C,solving the equations  ω = λ1ω1 + λ2ω2

ω̄ = λ1ω̄1 + λ2ω̄2

we findλ1, λ2 ∈ C
Choose m1,m2 ∈ Z : |λ1 −m1|, |λ2 −m2| ⩽

1

2
Assume further ω ∈M ,Setting ω′ = ω −m1ω1 −m2ω2,we have

|ω′| = |(λ1 −m1)ω1 + (λ2 −m2)ω2| < |λ1 −m1||ω1|+ |λ2 −m2||ω2| ⩽
1

2
(|ω1|+ |ω2|) ⩽ |ω2|

By the definition of ω2,since ω′ ∈M , ω′ ∈ Zω1

From now on we assume M = Zω1⊕Zω2 is the period module of an elliptic function f : C −→ C

2.2 Unimodular transform

模群，

• GL(2,Z)，阿尔福斯
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• SL(2,Z)，维基

• PSL(2,Z)，维基

Call a pair (ω′
1 − ω′

2) a basis of M if M = Zω′
1 ⊕ Zω′

2

Relation between two bases (ω1, ω2) and (ω′
1, ω

′
2) of M

choose a, b, c, d ∈ Z s.t.

(2)

 ω′
2 = aω2 + bω1

ω′
1 = cω2 + dω1

 ω2 = a′ω′
2 + b′ω′

1

ω1 = c′ω′
2 + d′ω′

1

use elementary linear algbra, we know htat(
a′ b′

c′ d′

)(
a b

c d

)
=

(
1 0

0 1

)

Call a linear transfomr in (2) with integral coefficients and det±1 unimodular.
Fact:Any two bases of the same moduleM = Zω1⊕Zω are connected by a unimodular transofrm

Notations Modular gp:=
{(

a b

c d

)
: ad− bc = ±1, a, b, c, d ∈ Z

}
Denote R = Z,R,C,

PSL(2, R) =

{
Mbiustransformz 7→ az + b

cz + d
| a, b, c, d ∈ R, ad− bc = 1

}
Example 2.1. PSL(2,R), PSL(2,Z)↷H = {τ ∈ C | =τ > 0}

τ 7→ aτ + b

cτ + d

2.3 The canonical basis

In the proof of Theorem 1 we roughly obtained a cononical basis (ω2, ω1) s.t.

ω2

ω1

∈ thefundamentalregioninF ig1.

Theorem 2.2. ∃ a basis (ω1, ω2) of M s.t. τ =
ω2

ω1

satisfieds the followint conditions

(i) =τ > 0

(ii) −1

2
< <τ ⩽ 1

2

(iii) |τ | ⩾ 1

(iv) <τ ⩾ 0 if |τ | = 1

The ratio τ is uniquely determined by these conditions, and there exists 2, 4 of 6 choices of
canonical bases.
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证明. Select ω1 and ω2 as in the proof of Theorem1 such that

|ω1| ⩽ |ω2|, |ω2| ⩽ |ω1 + ω2| and |ω2| ⩽ |ω1 − ω2|,

which are equivalent to
1 ⩽ |τ |, |τ | ⩽ |1 + τ | and |τ | ⩽ |1− τ |.

Take another canonical basis (ω′
2, ω

′
1)
T satisfy(

ω′
2

ω′
1

)
=

(
a b

c d

)(
ω2

ω1

)
where a, b, c, d ∈ Z and ad− bc = ±1.

τ ′ =
aτ + b

cτ + d
=
ac|τ |2 + bd+ (ad+ bc)<τ + i(ad− bc)=τ

|cτ + d|2
,=τ ′ = (ad− bc)=τ

|cτ + d|2
(i) =⇒ ad− bc = 1

We may assume that =τ ′ ⩾ =τ , then |cτ + d| ⩽ 1.

Case1 c = 0

|d| ⩽ 1 and d ∈ Z =⇒ d = ±1

ad− bc = 1 =⇒ a = d = ±1

=⇒ τ ′ =
aτ + b

d
= τ ± b

=⇒ <τ ′ −<τ = ±b ∈ Z,=τ ′ = =τ

(ii)<τ −<τ ′ ∈ (−1, 1) =⇒ |b| < 1 =⇒ b = 0 =⇒ τ ′ = τ(
1 0

0 1

)
,

(
−1 0

0 −1

)
Case2 Assume that c 6= 0 from now on ,tehn |c| = 1

If |c| ⩾ 2,

∣∣∣∣τ + d

c

∣∣∣∣ ⩽ 1

|c|
⩽ 1

2
, which is a contradiction.

Hence  c = 1, |τ + d| ⩽ 1

c = −1, |τ − 1| ⩽ 1
=⇒

 c = ±1, d = 0, |τ | = 1

d = −c = ±1, τ = eπi
3

(1) |τ | = 1, d = 0, c = ±1

|cτ + d| = |τ | = 1 =⇒ =τ ′ = =τ

ad− bc = 1 =⇒ bc = −1 =⇒ b = −c = ±1

τ ′ =
aτ + b

cτ
=
a

c
+
b

c
· 1
c
=
a

c
− 1

τ
= ±a− 1

τ
= ±a−<τ + i=τ

=⇒ <τ + <τ ′ = ±a ∈ Z

<τ + <τ ′ ∈ (−1, 1]

• When a = 0,<τ ′ = −<τ
|τ | = 1

(iv)
=⇒ <τ = 0

τ ′ = τ = i=τ |τ |=1
=⇒ =τ = 1, τ ′ = τ = i(

0 1

−1 0

)
,

(
0 −1

1 0

)
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• When a = ±1, <τ = <τ ′ = 1

2
=⇒ τ ′ = τ = eπi

3(
1 −1

1 0

)
,

(
−1 1

−1 0

)
(2) τ = eπi

3 , d = −c = ±1

|cτ + d| = 1 =⇒ =τ ′ = =τ
ad− bc = 1 =⇒ a+ b = d

τ ′ =


1

2
(1− 2a) + i

√
3

2
, d = −c = 1

1

2
(1 + 2a) + i

√
3

2
, d = −c = −1 a = 0, d = −c = 1, b = 1

a = 0, b = −1, d = −c = −1(
0 1

−1 1

)
,

(
0 −1

1 −1

)

2.4 General properties of elliptic functions

Suppose that f : C → C is meromorphic with preiod module M = Zω1 ⊕ Zω2(
ω2

ω2

/∈ R).Then f
takes the same value at each congruent class where we say that z1 ≡ z2( mod M) iff z1 − z2 ∈M .

∀a ∈ C, set Pa = {a+ t1ω1 + t2ω2 : 0 ⩽ t1, t2 ⩽ 1}, f is completely determined by its values in
Pa.

Assume that all elliptic functions are non-constant if otherwise stated.
Observation:∃a ∈ C s.t. f has neither poles nor zeros on ∂Pa.

证明. Pf :pole set,Zf :zero set
Ls = {a+ sω1 + tω2, 0 ⩽ t ⩽ 1}
Ls1 ∩ Ls2 = ∅,∀s1, s2 ∈ [0, 1]

∃s0 ∈ [0, 1], Ls0 ∩ Pf = ∅ and Ls0 ∩ Zf = ∅
L′
t = {a+ tω2 + sω1 : 0 ⩽ s ⩽ 1}

∃t0 ∈ [0, 1], L′
t0
∩ Pf = L′

t0
∩ Zf = ∅.

Set b = Ls0 ∩ L′
t0

.

Theorem 2.3. Each non constant elliptic function has poles.

Remark. A pole of an elliptic function means a congruent class. Then an elliptic function has
finitely many poles. We count the order of a pole as the usual way.

Theorem 2.4. The sum of the residues of the poles of an elliptic function vanishes.

证明. We take ∂Pa as bellow, where f has no pole on ∂Pa. By the residue theorem,∑
z∈IntPa

residueofpolez =

∫
∂Pa

f(z)dz = 0
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Remark. There exists no elliptic function with a single simple pole.

Theorem 2.5. A nonconst elliptic function has equally many poles as its zeros.

证明. Observe that f
′(z)

f(z)
is elliptic and poles and zeros of f are simple poles of f

′(z)

f(z)
. Moreever,

we have

ResP
f ′(z)

f(z)
=

multP (f), P is a zero off

−ordP (f), P is a pole off

Then
0 =

∫
∂Pa

f ′(z)

f(z)
dz = number of zeros of f − number of poles off

Definition 2.2. ∀f ∈ C, f(z)−c has the same poles as f . Hence, all complex numbers are assumed
equally many times by f . We call the number of in congruent roots of equation f(z) − c = 0 the
order of f .

Theorem 2.6. The zeros a1, · · · , an and poles b1, · · · , bn of an elliptic function of order n satisfy

a1 + · · ·+ an ≡ b1 + · · ·+ bn( mod M).

f even elliptic function with period ω1, ω2, can be expressed in the form

C
n∏
k=1

℘(z)− ℘(ak)

℘(z)− ℘(bk)

provided that 0 is neither a zero nor a pole.

证明. g(z) = ℘(z)− ℘(u), u ∈ P0\ {0}
pole: double pole 0

zero:

• two simple zeros

• one double zero

Let g(u) = 0,u ∈ Zf =⇒ g(−u)
u ≡ −u mod M =⇒ 2u = mωnω2 for some m,n ∈ Z
u ∈ P0\ {0} =⇒ u =

ω1

2
,
ω2

2
or ω1 + ω2

2

• u 6= ω1

2
,
ω2

2
and ω1 + ω2

2
=⇒ two simple zeros are u,−u

L1 = {tω1 : t ∈ [0, 1)} , L2 = {tω2 : t ∈ [0, 1)}

– When u ∈ L1,−u ≡ ω1 − u mod M

– When u ∈ L2,−u ≡ ω2 − u mod M

– u /∈ L1 ∪ L2,−u ≡ ω1 + ω2 − u mod M
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• u =
ω1

2
,
ω2

2
or ω1 + ω2

2

g(z) = g(−z) =⇒ g(2k−1)(z) = −g(2k−1)(−z) =⇒ g(2k−1)(u) = 0,∀ k ⩾ 1

=⇒ u is a double zero.

a ∈ Zf ,−a ∈ Zf

=⇒

 a 6≡ −a mod M

a ≡ −a mod M
=⇒

 2zeros : a,−a

order(a)is even
Zf = a1, a2, · · · , ak,−a1, · · · ,−ak, 2ak+1, · · · , 2an, ai 6≡ −ai,∀ 1 ⩽ i ⩽ k, ai ≡ −aik < i ⩽ n

Pf = b1, b2, · · · , bl,−b1,− · · · ,−bl, 2bl+1, · · · , 2bn, bi 6≡ −bi, 1 ⩽ i ⩽ l, bi ≡ −bi, l < i ⩽ n

f = C
n∏
k=1

℘(z)− ℘(ak)

℘(z)− ℘(bk)
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3 The Weierstrass theory

3.1 ℘-function

Want to cunstruct an elliptic function f of order 2 s.t. its Laurent development has form at
the origin

z−2 + 0 + a1z + a2z
2 + · · ·

CLAIM: f(z) = f(−z),∀z ∈ C i.e. f is even.Since f(z) − f(−z) is elliptic and holomorhic,
f(z)− f(−z) = const. On the other hand, f

(ω1

2

)
− f(−ω1

2
) = 0.

Fact(Weierstrass) An elliptic function of order 2 and with principal sigular part z−2 at the
origin must have form

℘(z) =
1

z2
+
∑
ω ̸=0

[
1

(z − ω2)− 1
ω2

]
证明.

• Uniform convergence on each compact subset of C\M can be reduced to
∑
ω ̸=0

1

|ω|3
< +∞.

• Denote by f the RHS.

Termwisely differtntiating, we find

f ′(z) = −2
∑
ω∈M

1

(z − ω)3

has periods in M . Hence f(z + wj)− f(z) ≡ cj .

Choose zj = −ωj
2

, we have cj = f
(ωj
2

)
− f

(
−ωj

2

)
= 0

Since ℘(z) and f(z) have order 2 and the same principal singular part, ℘(z)− f(z) = const

Therefore f(z) = ℘(z).

3.2 The function ζ(z) and σ(z)

We have the anti-derivative −ζ(z) of ℘(z) as

ζ(z) =
1

z
+
∑
ω ̸=0

(
1

z − ω
+

1

ω
+

z

ω2

)
Obeservation:∃ constants η1, η2 such that

ζ(z + ωj) = ζ(z) + ηj , j = 1, 2.

Legendre’s relation: η1ω2 − η2ω1 = 2πi

证明.
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Since residues of ζ equal 1, it has no single valued anti-derivative. To eliminate such multiple-
valuedness, consider the ODE

d
dz logσ(z) = σ′(z)

σ(z)
= ζ(z).

Observe

计算 ℘(z), ℘′(z), ℘′(z)2,

℘′(z)2 = 4℘3(z)− 60G2℘(z)− 140G3 =: (15)

That is, w = ℘(z) satisfies the ODE
(

dw
dz

)2

= 4w3 − g2w − g3. Then dz
dw =

1
dw
dz

=

1√
4w3 − g2w − g3

z =

∫ w dw√
4w3 − g2w − g3

+ C

Precisely,z− z0 =
∫ w=℘(z)

w0=℘(z0)

dw√
4w3 − g2w − g3

,where the path of integration from ℘(z0) to ℘(z)

is the image under ℘ of another path form z0 to z avoiding both zeros and poles of ℘′(z), and where
the sign of square root is chosen so that it equals ℘′(z).

3.3 The modular function λ(τ)

Determine the zeros of ℘′(z)

Let e1, e2, e3 be the three zeros of polynomial 4w3 − g2w − g3.
Then we have an alternative expression of (15)

℘′(z)2 = 4(℘(z)− e1)(℘(z)− e2)(℘(z)− e3) (20)

Differen
Since ω1

2
,
ω2

2
,
ω1 + ω2

2
are mutually incongruent, they are exactly the three simple zeros of

℘′(z).
We define

e1 = ℘
(ω1

2

)
, e2 = ℘

(ω2

2

)
, e3 = ℘

(
ω1 + ω2

2

)
. (1.1)

CLAIM:e1, e2, e3 are mutually distinct.
Since ℘′(

ω1

2
),℘(z) assume e1 at least twice. If two of them coincided with each other, that value

would be assumed ⩾ four times. Contradict with that ℘ is of order 2.

Definition of the modular function

H = {τ ∈ C | =τ > 0} λ−→ C\ {0, 1}.
Denote ℘(z) by ℘(ω1,ω2)(z) in order to express its depedence on M = Zω1 ⊕ Zω2.
Similarly,we use notations ek,(ω1,ω2) for k = 1, 2, 3.
Then, it is easy to check by (9) that

ek,(tω1,tω2) = t−2ek,(ω1,ω2), t ∈ C×.
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Hence we obtain that
λ(τ) =

e3 − e2
e1 − e2

=
℘
(
ω1+ω2

2

)
− ℘

(
ω2

2

)
℘
(
ω1

2

)
− ℘

(
ω
2

) (1.2)

depend only on τ =
ω2

ω1

.
λ : H → C\ {0, 1} is analytic.

Elliptic modular function

Given a unimodular transform
(
a b

c d

)
, we have

=aτ + b

cτ + d
= sgn(ad− bc)

=τ
|cτ + d|2

=
±=τ

|cτ + d|
.

(
a b

c d

)
does not preserve H in general.

Consider the subgroup Γ := SL(2,Z) of the modular group.
Define the congruence subgroup mod 2 of Γ = SL(2,Z) to be

Γ(2) =

{(
a b

c d

)
∈ SL(2,Z) :

(
a b

c d

)
≡

(
1 0

0 1

)
mod 2

}
.

Each unimodular transform in Γ preserves the period module, but permutes the three half period
and then also permutes e1, e2, e3.

However, ∀
(
a b

c d

)
≡

In this sense, λ : H → C is called an elliptic modular function.

3.4 The conformal mapping by λ(τ)

We normalize ω1 = 1, ω2 = τ ∈ H . We obtain by (9) and (21)

e3 − e2 =
∞∑

m,n=−∞

(
1

(m− 1
2
+ (n+ 1

2
)τ)2

− 1

(m+ (n− 1
2
)τ)2

)
(1.3)

e1 − e2 =
∞∑

m,n=−∞

(
1

(m− 1
2
+ nτ)2

− 1

(m+ (n− 1
2
)τ)2

)
where the double series absolutely converges and uniformly
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Let Ω′ = {τ − 1: τ ∈ Ω} ,∀τ ′ ∈ Ω′, τ ′ +1 ∈ Ω, λ(τ ′) =
λ(τ ′ + 1)

λ(τ ′ + 1)− 1
. Then λ maps Ω′ onto the

lower half plane and maps Ω ∪ Ω′ onto C\ {0, 1} (closure taken wrt {z ∈ C | =τ > 0})

Theorem 3.1. Each τ ∈ H is equivalent to exactly one pt in Ω ∪ Ω′ mod Γ(2).

证明. Each unimodular matrix in SL2(Z) = Γ is congruent mod 2 to one of the following six matrices
in Γ (

1 0

0 1

)
,

(
0 −1

1 0

)
,

(
1 1

0 1

)
,

(
1 −1

1 0

)
,

(
0 1

−1 1

)(
1 0

1 1

)
denoted by S−1

k (1 ⩽ k ⩽ 6) which acts on H as Möbius transform. That is,

S1(τ) = τ, S2(τ) = −1

τ
, S3(τ) = τ − 1, S4(τ) =

1

1− τ
, S5(τ) =

τ − 1

τ
, S6(τ) =

τ

1− τ

One can check that ∆ is mapped to the six shaded regions by Sk, 1 ⩽ k ⩽ 6.
There also exist six other mutually incongruent transformations S′

k which map ∆′ to the six
unshaded regions

S′
1(τ) = τ, S′

2(τ) = −1 +
1

τ
, S3(τ) = τ + 1, S′

4(τ) =
1

τ
, S′

5(τ) = − 1

1 + τ
, S′

6(τ) =
τ

τ + 1

These 12 shaded and unshade regions form Ω ∪ Ω′.
Take τ ∈ H . By Theorem 2, ∃ S ∈ SL2(Z), Sτ ∈ ∆ ∪∆

′

Corollary 3.1. H
λ−→ C\ {0, 1} is a covering map,i.e.,∀z ∈ C\ {0, 1}, ∃ an open neighborhood U0

of z0 s.t. λ−1(U) =
⊔

ϕ∈Γ(2)

Uϕ where λ
∣∣
Uϕ

: Uϕ → U is a homeomorphism.



Chapter 2

Global analytic functions

3 月 2 日 51 分 43 秒

1 Analytic Continuation

1.1 Germs and sheaves

• 整体解析函数一般记作 f.

• (f,Ω)，f 的代表元，称作 f 的分支.

• f 在 Ω 上可能有不同的分支.

Let Ω be a region in C and f : Ω −→ C an analytic function. Call pair (f,Ω) a function element. A
global analytic function is a collection of function elements which are related to each other in the
following manner.

Definition 1.1. We call that the two function elements (f1,Ω1) and (f2,Ω2) are direct analytic
continuations of each other iff f1 ≡ f2 in Ω1 ∩ Ω2 6= ∅.

Remark. There need not exist any direct cnotinuation of (f1,Ω1) to Ω2, but if there is one, it is
uniquely determined.

Definition 1.2. We say that (f̃ , Ω̃) is an analytic continuation of (f,Ω) iff ∃ a chain of function
elements (f1,Ω1) = (f,Ω), (f2,Ω2), · · · , (fn,Ωn) = (f̃ , Ω̃) s.t. (fk,Ω1) and (fk+1,Ωk+1) are direct
continuations of each other.

Hence we obtain an equivlence relation on {function element}, an equiv class is called a global
analytic function.

(f,Ω) :representative of

Example 1.1. open D ⊂ C. Denote

S = SD = {analytic germ(f, ζ) : ζ ∈ D, fanalytic near ζ} .

Definition 1.3. A sheaf S over X is a topological space with a map π : S → X onto X such that

17
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(i) π is a local homeomorphism.

(ii) For each ζ ∈ D the stalk π−1(ζ) =: Sζ has the structure of an abelian group.

(iii) The group operations are continuous.

FACT:∃ a topology onthe sheaf SD of germs of analytic functions such that it satisfies the
conditions of definition:

A subset V ⊂ SD is called open iff ∀s0 ∈ V, ∃(f,Ω) such that

(1) π

Remark. All function elements (f,Ω) form a base for the topology of SD.

Only verify condition (i): Use notions s0
Define

∆ := {f}
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1.2 Sections and Riemann surfaces

S
π−→ D : sheaf over a topology space D.

Definition 1.4. ∀ open U ⊂ D. Call a continuous map U φ−→ S a section over U iff

U S

D

φ

IdU π

Since π ◦ φ = IdU , φ is injective and φ1 = π
∣∣
φ(U)

.
Every section is a homeomorphism onto its image

• Every s0 ∈ S lies in the image φ(U0) of some section U0
φ−→ S.

By condition (i), we take an open neightborhood ∆ of s0 such that U0 := π(∆) ⊂ D,π
∣∣
∆

:

∆ −→ U0 homeomorphism.

Defing φ = (π
∣∣
∆
) : U0 −→ S. we have done.

• ∀ U ⊂ D,define ω : U → S, ζ 7→ 0ζ easy to show that 0U is continuous.

Then 0U is a section over U , called the zero section over U .

Γ(S)

Remark. If U is connected and φ,ψ ∈ Γ(U ;S), then either φ ≡ ψ on U or φ(U) ∩ ψ(U) = ϕ

证明. Only need to show

• {ζ ∈ U | φ(ζ) = ψ(ζ)} open

Assume that s0 = φ(ζ0) = ψ(ζ0) for some ζ0 ∈ U . By the definition of section,

φ−1 = π
∣∣
φ(U)

, ψ−1 = π
∣∣
ψ(U)

Since s0 ∈ ∆ := φ(U) ∩ ψ(U) ⊂ S open, φ ≡ ψ over ∆.

• {ζ ∈ U | φ(ζ) 6= ψ(ζ)} open

Assume that φ(ζ0) = s1 6= s2 = ψ(ζ0) for some ζ0 ∈ U . Since S is Hausdorff, ∃ neighborhoods
∆1,∆2 of s1, s2 : ∆1 ∩∆2 = ∅

Since φ = (π
∣∣
∆1

) over π(∆1) = U1, ψ = (π
∣∣
∆2

) over U2 := π(∆2), φ(ζ) 6= ψ(ζ) for all ζ ∈
U1 ∩ U2 ϶ ζ0.

3 月 9 日

Example 1.2. Sheaf of germs of continuous functions is non-Hausdorff.
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Let open D ⊂ Rn. Using function elements (f,Ω), f ∈ C0(Ω),Ω ⊂ D, we can define germs of
continuous functions over D and the corresponding sheaf S which satisfieds the three conditions .
But S is non-Hausdorff. We give a particular counterexample for SR.

Let f1 ≡ 0 and f2(x) =

 0 x ⩽ 0

x x > 0
which gives germs 0 and (f2, 0) at the orign. Obviously,

0 6= (f2, 0) in S

Clearly 0 and (f2, 0) can’t be separated by open sets!
We always consider the sheaf SD of analytic functions over D ⊂ C.

Proposition 1.1. A component of S can be identified with a global analytic function.

证明. Step 1
Let (f1,Ω1) be a direct continuation of (f0,Ω0) and ∆0,∆1 be the sets of germs determined by

(f0,Ω0), (f1,Ω1)

Since ∆0 ' Ω0,∆1 ' Ω1,Ω0 ∩ Ω1 6= ∅ =⇒ ∆1 ∩∆2 6= ∅,∆1,∪∆2 is connected.
Hence,all the function elements obtained from (f0,Ω0) by a chain of direct continuations de-

termine germs contained in the component of S0 of s0.
Step2
Let S′

0 be the set of germs in S0 determined by an analytic continuation
Since both S′

0 and its complement in S0 are open in S0 =⇒ S′
0 = S0

Summing up the obove, we see that S0 consists of exactly all the germs belonging to a global
analytic function

Definition 1.5. Let f be the global analytic function obtained from s0 ∈ S

Call S0 =: S0(℧) the Riemann surface of f.
There is a nature

S0(℧)
π−→ D

℧ζ 7−→ ζ

Look at Riemann surfaces as the natural world where analytic functions are alive, f can be
looked at as a single-valued analytic function on S0(f), its value at fζ being the constant term in
the power series associated with fζ .

Given two global analytic functions f, g such that the following diagram commutes

S0(f) S0(g)

D

θ

πf πg

then g ◦ θ is a single-valued function on S0(f).
In the way, f′, f′′, · · · are all well defined on S0(f).

Example 1.3. All entire functions live on S0(f),∀ f.

Example 1.4. If g,h are defined on S0(f), so are g + h and gh.
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Permanence principle

Suppose that (f,Ω), (g,Ω), (h,Ω), · · · could be continued whenever (f,Ω) can be through a
chain of direct continuation.

Assume that G(f, g, h, · · · ) = 0 on Ω. Then G(f, g,h, · · · ) = 0 i.e. the same relation holds for
all analytic continuations.

In particular, if a germ satisfies a polynomial differential equation, G(z, f, f ′, f ′′, · · · .f (n)) = 0,
then the global analytic function f satisfies the same equation.
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1.3 Analytic continuation along arcs

Given [a, b]
γ−→ C arc in the complex plane, an arc γ̄ : [a, b] → S0(f) is called an analytic

continuation of f along γ iff π ◦ γ̄ = γ.

Theorem 1.1. Two lifting γ̄1, γ̄2 along γ are either identical or γ̄1(t) 6= γ̄2(t) for all a ⩽ t ⩽ b.

Remark. A continuation along γ is uniquely determined by its initial value, germ γ̄(a) of form
fγ(a). Note that f may have several germs of this form.

Can speak of the analytic continuation from an initial germ, provided the continuation exists.

singular path,singular point

It may happen that f doesn’t have a continuation along γ, or that a continuation exists for
some germs, but not for all. Consider an initial germ fγ(a) which can’t continue along γ. Define

τ := sup
{
t0 > a : ∃ continuation along[a, t0]

γ−→ C
}

Then a < τ ⩽ b, and the continuation is possible for t < τ , impossible for t ⩾ τ0. The subarc
γ([a, τ ]) leads to a point where f ceases to exist.

We call this subarc a singular parts from the initial germ and it leads to a singular point over
γ(τ).

Continuation along arcs v.s chains of direct continuations(stepwise continuations)

Roughly speaking, they are equivalent

• stepwise continuation=⇒ the one along an arc

• conversely, if γ and its lifting γ̄ is given, we can find a chain of direct analytic continuations
which produces the arc γ in the same way of LHS

Example 1.5 (Logarithmic log function). The set of all function element (f,Ω) with ef(ζ) = ζ in
Ω is global analytic function over C×, denoted by log z.

证明. Only need to show that any two such function elements (f1,Ω1), (f2,Ω2) can be joined by
a

Example 1.6. ∃γ ⊂ C,∃ a global analytic function f
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1.4 Homotopy curves

3 月 14 日
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1.5 The monodromy theorem

Consider a global analytic function f over Ω ⊂ C such that for each arc γ : [a, b] → C and each
germ (f0, ζ0 = γ(a)) of f, there exists a continuation γ̄ over γ.

Theorem 1.2. Let γ1, γ2 : [a, b] → Ω be homotopic in Ω and have common endpoints. Suppose that
a given germ of f at the initial point γ1(a) = γ2(a) can be continued along all arcs in Ω. Then the
continuations of the germ along γ1 and γ2 lead to the same germ at the terminal point.

证明. Before the proof, we make the following observations.

(1) The continuation along γγ−1 leads back to the initial germ. Hence, the continuaiton along
σ1(γγ

−1)σ2 has the smae effect as the one along σ1σ2.

That the continuations along γ1 and γ2 lead to the same

Corollary 1.1. If Ω is simply connected, thne continuations of an initial germ (f, ζ0) at ζ0 ∈ Ω of
f can define a single-valued analytic function.
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1.6 Branch points

D×
ρ := {z ∈ C | 0 < |z| < ρ} , ρ ∈ (0,+∞]

Fix 0 < z0 = r < ρ, Then the fundamental group of D×
ρ at the base z0

π1(D×
ρ , z0) =

{
homotopy class of the curves throughz0inD×

ρ

}
= 〈C〉 ∼= Z.

Recall
∫
Cm

dz
z

= 2πmi,m ∈ Z

Assumption 1 Consider a global analytic function f that can be continued along each arc in D×
ρ

e.g.
√
z, log z,

√
z + log z

Assume that f is not single-valued ,i.e., f has more than one germ at z0 = r.
Choose an initial germ at z0 ∈ r and continue it along curves Cm(m ∈ Z×).
Then, either the continuation never comes back to the initial germ, or there exists a smallest

positive integer h such that Ch leads back to the initial germ.
e.g. h = 2,∞ for

√
z,log z resp.

Assumption 2 ∃ a smallest positive integer h greater than 1 such that Ch leads back to the
initial germ.

Then if Cm also leads back to the initial germ, writting m = nh+ q(n ∈ Z, 0 ⩽ q < h), we see
that so does Cq, q = 0 and h | m.

Observation:Using the map D×
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2 Algebraic functions

3 月 16 日，3 月 21 日
Let P ∈ C[w, z]. We interpret, for each z, the finite number of solutions

w1(z), · · · , wn(z)

of P (w, z) = 0, as values of a global analytic function f(z), which is called an algebraic function.
Conversely, we shall tell whether a given global analytic function satisfies a polynomial equaiton.

2.1 The resultant of two polynomials in C[w, z]

Definition 2.1. Irreducible polynomial in C[w, z].

Theorem 2.1. Let P (w, z) and Q(w, z) be relatively primes in C[z, w] and have positive degree in
w. Then

# {z0 ∈ C | ∃ w ∈ s.t. P (w, z0) = Q(w, z0) = 0} <∞.

证明. We express P and Q according to decreasing powers of w. Assume degw P ⩾ degwQ
Using the Euclidean division algorithm, we have

c0P = q0Q+R1

c1Q = q1R1 +R2

c2R1 = q2R2 +R3

cn−1Rn−2 = qn−1Rn−1 +Rn

where qk, Rk ∈ C[w, z], Rn ∈ C[z]
and ck ∈ C[z] which are uesd to clean fractions.
CLAIM:Rn(z) 6≡ 0

Assume that P (w0, z0) = (w0, z0) = 0. Then by (4). Rn(z0) = 0

Definition 2.2. Letting that the exponents ck in (4) have the lowest degree possible, we could
determing Rn(z) uniquely, which is called the resultant of P and Q. Moreover, Rn(z) = pP + qQ

for some p, q ∈ C[z, w].
Let P ∈ C[z, w] be irreducible. Then P (w, z) and Pw(w, z) =

∂P

∂w
(w, z) are relatively prime.

We call the resultent of P and Pw teh discriminant of P . The zeros of the discriminent are
exactly

Corollary 2.1. The above set coincides with {z0 ∈ C, Rn(z0) = 0}

the values z0 for which the equation P (w, z0) = 0 has multiple roots.
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2.2 Definition and properties of algebraic functions

Definition 2.3. A global analytic function f is called an algebraic function if and only if ∃ P ∈
C[z, w] with degw P > 0 such that all function elements (f,Ω) of f satisfy P (f(z), z) = 0 in Ω.

Remark. By the permanence principle, we could only assume the above equation for one function
elements of f.

We may assume that P (w, z) is irreducible.
Assume that P (w, z) is irreducible from now on.
P is uniquely determined by f up to a const.
If P ∈ C[w], by irreducibility, it must be of form w − a, f must be const.

AIM Shall prove that ∃ an algebraic function corresponding to an irreducible polynomial
P (w, z) with degp P > 0.

Let P have from P (w, z) = a0(z)w
n + a1(z)w

n−1 + · · ·+ an(z).
Set C = {z0 ∈ C : a0(z0) = 0 or the discirminant D(p) of P vanishes atz0}.
Then C is finite, say C = {c1, c2, · · · , cm}.
Fix z0 /∈ C, the equation P (w, z0) = 0 has exactly n distinct roots, say w1, · · · , wn.

Lemma 2.1. Fix z0 /∈ C, There exists an open disk ∆ centered at z0, and n function elements
(f1,∆), · · · , (fn,∆) such that

(1) P (fj(z), z) = 0

(2) wj = fj(z0)

(3) If P (w, z) = 0 for some function elememnt (w = w(z),∆), then ∃ 1 ⩽ j0 ⩽ n such that
w(z) = fj0(z) for some j0.

证明. Choose 0 < ε << 1, such that disks |w − wj | < ε don’t overlap. Denote by Cj the circles
|w − wj | = ε where P (w, z0) 6= 0.

By the argument principle,
1

2πi

∫
Cj

Pw(w, z0)

P (w, z0)
dw = 1.

Moreover, the integrals define continuous functions near z0, which can only take integer values.
Hence, ∃ disk ∆ ϶ z0

1

2πi

∫
Cj

Pw(w, z)

P (w, z)
dw = 1,∀z ∈ ∆

Hence the equation P (w, z) = 0 has exactly one root in |w − wj | < ε,denoted by fj(z).
Moreover, by the residue theroem,

fj(z) =
1

2πi

∫
Cj

w
Pw(w, z)

P (w, z)
dw

which shows that fj(z) is analytic in ∆ and fj(z0) = wj . We have already proved (a) and (b).

Remark.
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(1) Each function element (f,Ω) satisfying P (f(z), z) = 0 in Ω is the direct continuation of (fj ,∆)

for some 1 ⩽ j ⩽ n.

(2) A function element (f,Ω) satisfying P (f(z), z) can be continued along all path in C\C.

In order to show that the global analytic function f corresoponding to P is unique, we only
need to show that all elements (fj ,∆) belong to the same global analytic functions.
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2.3 Behavior at the critical points

Choose δ > 0 such that the disks |z − ck| < δ, 1 ⩽ k ⩽ m don’t overlap.
z0 = ck +

δ

2
Continuing germ (fj , z0) along C̃ leads to another germ (fl, z0).
Since ∃ n choices, we obtain a smallest positive integer 1 ⩽ h ⩽ n such that continuation along

C̃h leads back to the initial germ.
By section 1.6, we have

fj(z) =
+∞∑

ν=−∞

Aν(z − ck)
ν/h (5)

We make the following discussion according to the following three cases:

(1) ck ∈ C, a0(ck) 6= 0.

(2) ck ∈ C, a0(ck) = 0.

(3) Behavior at ∞.

a0(c0) 6= 0

We claim that fj(z) remains bounded as z → ck, i.e. fj has at most an ordinary algebraic
sigularity at ck.

Otherwise, we could choose points zm̃ → ck with fj(zm̃) → ∞.
Without loss of generality, we assume fj(zm̃) 6= 0, by the equation P (fj(zm̃, zm̃)) = a0(zm̃)fj(zm̃)

n+

· · ·+ an(zm̃) = 0, we obtain

a0(zm̃) + a1(zm̃)fj(zm̃)
−1 + · · ·+ an(zm̃)fj(zm̃)

−n = 0 (6)

Letting m̃→ ∞, we find a0(ck) = lim
m̃→∞

a0(zm̃) = 0, Contradiction!

a0(ck) = 0

Take l ∈ Z>0 with lim
z→ck

a0(z)(z − ck)
l 6= 0

CLAIM fj(z)(z − ck)
l remains bounded as z → ck i.e. fj has at most an algebraic pole at ck.

Can prove by the similar contradiction argument.

Behavior at z = ∞

Recall P (w, z) = a0(z)w
n + a1(z)w

n−1 + · · ·+ an(z), a0, an 6≡ 0

We consider deg ai = ri and don’t care about ai(z) ≡ 0. Choose l ∈ Z>0 such that

l >
1

k
(rk − r0),∀k = 1, · · · , n (2.1)

CLAIM As z → ∞, fjz
−l remains bounded i.e. fj(z) has at most an algebraic pole at ∞.

Otherwise, we could choose zm̃ → ∞ with fj(zm̃)
−1zlm̃ → 0, which implies

fj(zm̃)
−k
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Multiplying (6) by z−r0m̃ , since deg aj = rj , we find that

a0(zm̃)z
−r0
m̃ → 0

Since r0 = deg a0(z), a0(z) 6≡ 0, Contradiction!
Summing up, we have proved
FACT An algebraic function has at most finitely many algebraic singularity in C
We shall prove a converse of this fact.
Let f be global analytic function satisfying the following two conditions

(1) ∀ c ∈ C, ∃ a punctured disk ∆∗ centered at c such that

• ∀ z0 ∈ ∆∗, ∃ at least one and finitely many germs of f at z0

• all germs of f at z0 can be continued along all arcs in ∆∗ and show algebraic character at
c, i.e. ∃ the smallest positive integer h, ∃ ν0 ∈ Z, germs have form

+∞∑
ν=ν0

Aν(z − c)ν/h

(2) For c = ∞,∆∗ is the exterior of a circle, ∃h ∈ Z>0 and ν0 ∈ Z, each germ at z0 ∈ ∆∗ has form
∞∑
ν=ν0

Aνz
−ν/h

Remark. Under the above conditions, f has finitely many effective singularity, which we denote by
c1, · · · , cn ∈ C

Observation The number of germs at each point z ∈ {}
Denote by f1(z), · · · , fn(z) the branches of f
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3 Picard’s theorem

3 月 23 日

Definition 3.1. a ∈ C is called the lacunary value（空隙值）of a function f(z) if f(z) 6= a in its
domain.

Example 3.1. 0 is the lacunary value of the entire function ez on C.

Theorem 3.1 (Picard). A entire function with more than one finite lacunary value reduces to a
const.

证明. Let C f−→ C be an entire function with at least two lacunary values a 6= b in C.
Without loss of generality, we assume a = 0 and b = 1.
Recall that modular function λ : H → C\ {0, 1} is holomorphic and λ′(τ) 6= 0,∀ z ∈ H .

H

C C\ {0, 1}

Construct a global analytic function h whose function element (h,Ω) satisfy

(1) =h(z) > 0 and λ(h(z)) = f(z),∀z ∈ Ω

(2) h can be continued along all paths in C

Since C simply connected, by the monodromy theorem, h defines an entire function taking
values in H and is constant by Liouville’s theorem.

4 Linear differential equations

a0(z)
dnw
dzn + a1(z)

dn−1w

dzn−1
+ · · ·+ an(z)w = b(z) (8)

a0(z), · · · , an(z), b(z),entire functions, say polynomials.
We say that a global analytic function f solves (8) iff all function elements (f,Ω) of f satisfy the

corresponding ODE in Ω.

Remark.

(1) Recall in the real cese, we expect the equation

a0f(n) + a1(z)f(n−1) + · · ·+ an(z)f = b (9)

to have n linear independent solutions.

(2) In the complex case, different local solutions can be function elements of the same global analytic
function.

In this case, the problem is to find out to what extent the local solutions are analytic continu-
ations of each other.



CHAPTER 2. GLOBAL ANALYTIC FUNCTIONS 32

The equation (8) is called homogeneous iff b(z) ≡ 0. Assume ak(z), 0 ⩽ k ⩽ n, have no common
zero.

Example 4.1. In the case n = 1

an
dw
dz + a1w = 0 ⇐⇒ d logw = −a1(z)

a0(z)

w = exp
(
−
∫
a1(z)

a0(z)
dz
)

The problem is reduced to determining the multi-valued character of the integral
∫
a1(z)

a0(z)
dz

which is relevant to residue calculus.
We shall deal with second order linear differential equation, since they have all characteristic

features of the general case.

4.1 Ordinary point

For differential equation
a0(z)w

′′ + a1(z)w
′ + a2(z) = 0 (10)

a point z0 is called ordinary point iff a0(z0) 6= 0

w′′ = p(z)w′ + q(z)w, p(z) = −a1(z)
a0(z)

, q(z) = −a2(z)
a0(z)

are analytic at z0

Theorem 4.1. If z0 is an ordinary point of (10), for any given b0, b1 ∈ C,∃! local solution (f,Ω)

with f(z0) = b0, f(z1) = b1.
In particular, the germ (f, z0) is uniquely determined.

4.2 Regular singularity

A point z0 with a0(z0) = 0 is called a singularity of of (10).
Then both p(z) and q(z) have poles at most at z0.
The simplest case Assume that z0 is a simple
Suppose that w = b0 + b1z + b2z

2 is an analytic local solution of (11) near z0 = 0. Then

4.3 Rieview

Consider
a0(z)w

′′ + a1(z)w
′ + a2(z)w = 0, (10)

a0 6≡ 0, a1, a2 :entire functions with no common zero

• ordinary point z0 : a0(z0) 6= 0 ∃2 dim linear space of analytic solutions near z0

Consider equation
w′′ = pw′ + qw (11)

p, q meromorphic function in C
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Regular singularity z0 of (11) p has at most a simple pole at z0
q has at most a double pole at z0
Recall the simplest case where both p(z) and q(z) have at most a simple pole at z0 = 0.
We proved that if the Laurent development p−1

z
+ · · · of p(z) at z0 = 0 satisfies p−1 /∈ Z⩾0

there exists a nontrivial analytic solution of (11) near z0 = 0.

4.4 General regular singularity z0 = 0

3 月 28 日
Suppose w(z) = zαg(z) where g is analytic near z0 = 0 and g(0) 6= 0.
Solves (11) for some α ∈ C in some simply connected region Ω near z0 = 0 but not containing

z0.
Then g(z) satisfies

g′′ = (p− 2α

z
)g′ + (q +

αp

z
− α(α− 1)

z2
)g (18)

p =
p−1

z
+ · · ·

q =

Denote by α1 and α2 the roots of (19), called the (indicial) exponents of (11) at z0
Then α1 + α2 = p−1 + 1, α2 − α1 = p−1 − 2α1 + 1

Hence α1 is exceptional iff α− α1 ∈ Z>0.
By symmetry, α2 is exceptional iff α2 − α1 ∈ Z<0.
Hence, if the roots of the indical equation (19) don’t differ by an integer,

5 Solutions at ∞

Suppose that a0 6≡ 0, a1, a2 are polynomials without common zeros.
We investigate solution of

6 The hypergeometric differential equation

To study a 2nd DE with three regular singularities 0, 1,∞, we consider the equation

w′′ = p(z)w′ + q(z)w

with finite singularity at 0 and 1.
To make ∞ regular, 2z + z2p(z) must have at most a simple
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7 Riemann’s point of view

3 月 30 日
Riemann proved in 1857 that the solutions of hgde could be characterized by its nature.

Theorem 7.1. The collection F of function elements (f,Ω) satisfying the following five character-
istic features can be identified with the collection of local solutions of the hgDE

w′′ +

(
1− α1 − α2

z
+

1− β1 − β2
z − 1

)
w′ +

(
α1α2

z2
− α1α2 + β1β2 − γ1γ2

z(z − 1)
+

β1β2
(z − 1)2

)
w = 0 (23)

(1) F is complete in the sense that it contains all continuations of (f,Ω) ∈ F

(2) The collection is linear.

• ∀(f1,Ω), (f2,Ω) ∈ F =⇒ (c1f1 + c2f2,Ω) ∈ F

• any three elements (f1,Ω), (f2,Ω), (f3,Ω) ∈ F linearly dependent.

That is,F has at most two dimension.

(3) The only finite singularity are at 0 and 1, and ∞ may be a singularity. Precisely, any element
(f,Ω) ∈ F can be continued along each path in C\ {0, 1}.

(4) ∃ functions in F which behave like zα1 and zα2 near 0, like (z − 1)β1 and (z − 1)β2 near 1 and
like z−γ1 and z−γ2 near ∞.

(5) Assume α2 − α1, β2 − β1, γ2 − γ1 /∈ Z.

Remark. • α1 + α2 + β1 + β2 + γ1 + γ2 = 1 can be deduced from the proof.

• The non-integral assumption 5 may be removable in some sense.

Remark. Riemann used the symbol P
(

��...
)

证明. We divide the proof of the theorem into four steps

(1) ∀ simply connected region Ω ⊂ C\ {0, 1}, ∃ two linearly independent elements (f1,Ω), (f2,Ω) ∈
F

(2) Choose a third element (f,Ω) ∈ F. Then ∃c, c2, c2 ∈ C not all zero

{
��... =⇒


f f1 f2

f ′ f ′
1 f ′

2

f ′′ f ′′
1 f ′′

2

 ≡ 0

We write the DE in form f ′′ = p(z)f ′ + q(z)
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Chapter 3

Preliminaries

1 CPn

C×↷Cn+1\ {0}
∀ A ∈ GL(n+ 1,C), A and λAhave the same effect on Pn, where λ ∈ C×

36
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2 Coverings

Without loss of generality, we only consider connected surfaces.
Call a continuous map M

p−→ N a covering iff it satisfies the following three conditions

(1) every point y of N has a neighborhood U = Uy ⊂ N whose p-preimage is a disjoint union of
several copies of U

(2) the restriction of p to each copy is a homeomorphism

(3) either every point of N has countably many preimages, or the set of preimageo of every point
is finite and any two points have the same number of preimages.

The common number of preimages is called the degree or the number of sheets of the covering.

Example 2.1.

(1) z
p−→ zn is an n-sheeted covering from D×

ρ = {0 < |z| < ρ} to D×
ρn .

Theorem 2.1. Let M,N be compact surface and M p−→ a n-sheeted covering. Then

χ(M) = nχ(N).

证明.

Monodromy of covering

Example 2.2. 内容...



CHAPTER 3. PRELIMINARIES 38

3 Ramified coverings



Chapter 4

Algebraic curves

Complex algebraic curves = curves defined by homogeneous polynomial equations in complex
projective space

1 Plane algebraic curves

C =

{
(x, y, z) ∈ P2 : F (x, y, z) =

∑
i+j+k=n

aijkx
iyjzk = 0, notallaijkvanishes

}
n : degreeofF

In each of the three affine charts x = 1, y = 1 or z = 1, we could express the curve by a
non-homogeneous equation in the remaining two variables.

Example 1.1.
{
(x, y, z) ∈ P2 : x2 + y2 − z2 = 0

}
in chart z = 1 looks like

{
(x, y) ∈ C2 : x2 + y2 = 1

}
.

If all coefficients aijk are real, the curve is called real.
The real point (x : y : z) lying on a real curve form the real part of the curve, which may be

empty, e.g. x2 + y2 + z2 = 0.
Sometime, we use real parts of real curves to see a picture of the curve.

Example 1.2 (line). ax+ by + cz = 0, where (a : b : c) ∈ P2

For any pair (x1 : y1 : z1) 6= (x2 : y2 : z2) ∈ P2,∃! line through then given by

∣∣∣∣∣∣∣∣
x y z

x1 y1 z1

x2 y2 z2

∣∣∣∣∣∣∣∣ = 0,

rank
(
x1 y1 z1

x2 y2 z2

)
= 2

Any two distinct lines intersect in exactly one points.

Any two different lines are given by a1x+b1y+c1z = 0, a2x+b2y+c2z = 0, where rank
(
a1 b1 c1

a2 b2 c2

)
=

2

Hence ∃! solution (x : y : z) ∈ P2

39
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1.1 Irreducible/reducible curve

4 月 11 日 20 分 57 秒
Call C : F (x, y, z) = 0 irreducible iff F 6= F1F2 where F1, F2 have positive degrees.
Otherwise we call C reducible. In the latter case, as sets, the reducible curve {F1F2 = 0} is the

union of the curves {F1 = 0} and {F2 = 0}. It may happen that F1 = F2.
4 月 11 日 25 分 51 秒

Example 1.3 (Toy model of Bezout Theorem). Let l1, · · · , ln be pairwise distinct linear functions.
Then the euqation l1l2 · · · ln = 0 gives the simplest reducible curves of degree n which is the

union of the n lines l1 = 0, · · · , ln = 0.

Example 1.4. Consider curves l1 · · · lm = 0 and l′1 · · · l′n = 0 such that l1 = 0, · · · , l′n are (m + n)

distinct lines in P2 and any three of these lines do not intersect at one point.
Then the two curves l1 · · · lm = 0 and l′1 · · · l′n = 0 have exactly mn pairwise distinct intersection

points.

1.2 Singular/Smooth point

4 月 11 日 41 分 45 秒

Definition 1.1. Point (x0 : y0 : z0) on curve F (x, y, z) = 0 is called singular/smooth iff dF =
∂F

∂x
dx+

∂F

∂y
dy + ∂F

∂z
dz vanishes/does not vainish at (x0 : y0 : z0).

Remark. 隐函数定理确定全纯函数，可参考 Donaldson

Definition 1.2 (Nondegenerate homogeneous polynomial). Call a homogeneous polynomial F (x, y, z)
nondegenerate iff curve F (x, y, z) = 0 contains no singular point. In this case, we call the curve
F (x, y, z) = 0 smooth.

Remark. 成为一维复流形，紧黎曼面.

Example 1.5. A reducible curve F1F2 = 0 cannot be smooth since each point lying in {F1 = F2 = 0}
is singular on the curve. 之后会证明 {F1 = F2 = 0} 不是空集，此处先承认.

Example 1.6. ∃ irreducible nonsmooth curve x2z + y3 = 0, (0 : 0 : 1) is singular on the curve.

1.3 在仿射坐标卡中计算奇点

4 月 11 日 52 分 16 秒
How to check that a curve is smooth in some chart, say z = 1?
Let A ∈ C lie in the chart z = 1 and f(x, y) = F (x, y, 1). Then the differential df =

∂f

∂x
dx +

∂f

∂y
dy vanishes at A iff dF = 0 at A.

Actually, by the Euler identity, x∂F
∂x

+ y
∂F

∂y
+ z

∂F

∂z
= nF .

If ∂F
∂x

=
∂F

∂Fy
= 0 at A ∈ {z = 1}, then we also have ∂F

∂z
= 0 at A.
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Remark. An irreducible curve C = {F (x, y, z) = 0} has at most finitely many singular points.
但还不知道怎么证.

Example 1.7. (1) Each point on C =
{
l2 = (ax+ by + cz)2 = 0

}
is singular.

(2) F (x, y, z) = xn + yn + zn is nondegenerate.

(3) (0 : 0 : 1) is the unique singular point of x2 + y2 = 0.

Example 1.8. Let C be a smooth conic in P2. Then in an appropriate coordinate system, C has
form x2 + y2 + z2 = 0.

Definition 1.3 (Ordinary double point). Let (0, 0) be a singular point point of an affine curve given
by a nonhomogeneous polynomial equation f(x, y) = 0. The Taylor development of f about (0, 0)

has form f(x, y) = 0 + 0 + (ax2 + 2bxy + c2y2) + · · · we call (0, 0) an ordinary double point iff the
quadratic part of f is nondegenerate, i.e.

Definition 1.4. Let A be a singular point of curve F = 0, say A = (0 : 0 : 1). Then in chart
{z = 1}

Example 1.9. (1) Let l1, · · · , lk be linear functions vanishing at A. Then mulA(l1 · · · lk = 0) = 0

1. For both two curves y2 = x2(x− 1) and y2 = x2, the multi(0, 0) = 2.

1.4 title

How many points in P2 are required to uniquely determine a curve of deg n pathing through
them?

The space of curves of degree n in P2 = Pd

2 第八周周三

Recall
Geometric question: How many points in P2 are required to uniquely determine a curve of

degree n through them?
The Veronese embedding of P2 is defined to be

vn : P2 → Pd = Pn(n+3)/2, (x : y : z) 7→ (· · · , xiyjzk, · · · ),where i+ j + k = n, i, j, k ∈ Z⩾0

The image under vn of a curve of degree n in P2 is the cross-section of vn(P2) by a hyperplane.
vn : P2 → Pd is nonedgenerate, i.e. vn(P2) is not contained in any hyperplane H in Pd = 0.
Otherwise, there exists a curve of degree n which coincides with P2, Contradict with the Null-

stellensatz.
Answer to the geometric question by the following 2 observations
Observation 1. There exist a curve of degree n through any given n(n+ 3)

2
points in P2

Moreover, the curve is unique iff rank(vn(P1), · · · , vn(Pd)) = d.
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Observation 2. There exists (d + 1) points in P2 such that there exists no curve of degree d
through them.

Observation 3. Suppose P1, · · · , Pd−1 ∈ P2 satisfy rank(vn(P1), · · · , vn(Pd)) = (d− 1)

Then there exist two distinct curves F = 0 and G = 0 of degree n such that each degree d
curve through P1, · · · , Pd−1 has form λF + µG = 0

We call the family λF + µG = 0a pencil of curves of degree n.
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3 Bezout’s theorem and its applications

Common point A of two curves F = 0 and G = 0

(1) Assume that A is a smooth point for both two curves

(a) transversal intersection

(b) touch

(2) A is a singular point for one of them

(c)

(d)

Stability
Transversality is stable under small perturbation.
Tangency is an unstable configuration.
Enumeration of the intersection points of curves

Example 3.1. Consider a line l and a curve F (x, y, z) = 0 of degree n. Choose two distinct points
(x0 : y0 : z0), (x1 : y1 : z1) in l. Then we can prarmetrize the line by the map

C ∪∞ = P1 φ−→ P2, t 7−→ (x0 + x1t : y0 + y1t : z0 + z1t)

Then we obtain the equation of the intersection points of the line and the curve F (x, y, z) = 0

F (x0 + x1t, y0 + y1t, z0 + z1t) = 0

deg n in t.
The image under φ of the n roots of (∗) are the n intersection points. Counected with multi-

plicities.

The intersection of a curve F (x, y, z) = 0 of degree 3 and a curve

F (x, y, z) = a0y
3 + a1(x, z)y

2 + a2(x, z)y + a3(x, z)

G(x, y, z) = b0y
2 + b1(x, z)y + b2(x, z)

ak, bk are homogeneous polynomial of degree k in x and z.
Without loss of generality, a0b0 = 0,i.e. non of the two curves passes throught (0 : 1 : 0).
Trivial observation: A point (x0 : y0 : z0) is an intersection point of F = 0 and G = 0 iff the

two polynomials F (x0, y, z0) and G(x0, y, z0) have a common root y0.
Crucial observation Let φ = φ(y), ψ = ψ(y) ∈ C[y]\ {0} be of degree m and n, resp. Then they

have a common root iff ∃φ1, ψ1 ∈ C[y]\ {0} : φψ1 = ψφ1 and deg

证明.

Let f1 and g1 have form f1(y) = u0y
2 + u1y+u2, g1(y) = v0yv)1 and satisfy

F (x0, y0, z0)g1(y) = G(x0, y, z0)f1(y)
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4 4 月 18 日第九周周一

4.1 Topological proof of Bezout’s theorem

Step 1

Trivial observation: An integer valued continuous function on a connected space X is constant.
Consider in P2

C1: m distinct lines through one point
C2: n distinct lines through another point
C1 ∩ C2 = {m · n}
Slightly perturbing their coefficients of C1 and C2, we obtain a pair of curves withmn transversal

intersection points.

Step 2

In the space P
m(m+3)

2 × P
n(n+3)

2 of pairs of curves of deg m and n resp, there is a Zariski open
subset of pairs of curves with m · n transversal intersection points.
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5 Rational parametrization

Observation: A conic is smooth iff it is irreducible.
Rational parametrization of a smooth conic C
Take a point A ∈ C ⊂ P2.
All line through A in P2 form a projective line.

Coordinate representation of this parametrization

The conic x2 + y2 − z2 = 0 is given by x2 + y2 = 1 in affine chart {z = 1}.

Line y = t(x+ 1) through A intersectes the conic at another point
(
1− t2

1 + t2
,

2t

1 + t2

)
.

The corresponding homogeneous version has form (s : t) 7→ (s2 − t2 : 2st : s2 + t2)

rational normal curve of deg 2.
P1 → P2

Example 5.1.

•

• An irreducible cubic has at most one singularity point of multiplicity 2.

Theorem 5.1. An irreducible curve of deg n has at most N =
(n− 1)(n− 2)

2
ordinary double

points.

证明. 内容...

Remark. ∃ an irreducible curve of deg n with exactly N =
(n− 1)(n− 2)

2
double points.

We shall show that a deg n irreducible curve withN double points admits a rational parametriza-
tion,i.e., ∃ homogeneous polynomials x(s, t), y(s, t), z(s, t) of deg n such that the image of the map-
ping

P1 → P2, (s : t) 7→ (x(s, t) : y(s, t) : z(s, t))

coincides with C.Moreover, different values of (s : t) yield different points in C except each double
point of C has exactly two preimages.

(P1 → C is called a normalization of C)
Topologically, C\ {double points} ∼= S2\ {2Npoints}

Theorem 5.2. An irreducible degree n ⩾ 3 curve with N double points admits a rational parametriza-
tion.

证明. Deal with case n = 3 at first.
Via some projective transformation, we can assume that the irreducible cubic has equation

y2 = x2 + x3 in affine chart {z = 1} with the unique double point (0, 0) =: O.
Line y = tx through O meets the cubic in exactly one other point (x(t), y(t)) = t2 − 1, t(t2 − 1)

Then P1 → C, t 7→ (t2 − 1, t(t2 − 1))

• to every point of C except O there corresponds exactly one value of t.
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• to O there correspond two tangents y = ±x to the two branches of C at O, i.e. the exceptional
point of C is the double point O.

Given a partial proof for case n > 3. Let A1, · · · , AN be double points of C. choose arbitrary
points P1, · · · , Pn−3 on C different from Pj . Since N + (n− 3) =

(n− 2)(n+ 1)

2
− 1, there exists a

pencil of deg n− 2 curves through A1, · · · , AN , P1, · · · , Pn−2.
Each curve of deg n− 2 from the pencil has 2N +(n− 3) exactly one other common point. On

the other hand, the point A1, · · · , AN , P1, · · · , Pn−3 and every onter point on C determines a unique
curve of deg (n−2) from the pencil. Thus we obtain a parametrization of C\ {A1, · · · , AN , P1, · · · , Pn−3}
by the parameter of the pencil.

HW: The left part of the proof.

5.1 Nontransversally intersecting pairs of plane curves

Supplement ot [P23.KLP] where the authors give a topological proof for Bezout theorem.
Let m,n ∈ Z>0. Recall that the plane curves of degree m form a projective space of dim

m(m+ 3)

2
.

Easy observation. Pairs of non-transversally intersecting lines form the diagnal of P2 × P2.
Let max(m,n) > 1.
Claim:Non-transversally intersecting curves of deg m and deg n in P2 form a hypersurface in

P
m(m+3)

2 × P
n(n+3)

2 .
Proof of sketch. We deal with case (m,n) = (3, 2).
Suffice to show the statement locally.
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1 The complex structure on a curve

4 月 18 日 1 小时 45 分 19 秒

Remark. 此书之前没有定义过 Pn 中的光滑曲线. 可先按 n = 2 理解.

Assume that open W ⊂ Cn+1 × C, n ⩾ 2 and W
f−→ Cn+1 holomorphic function.

Let (w0; z0)

Hence, by the implicit function theorem, we can identify a neighborhood of each point of C with
D ⊂ C i.e. ∀ A ∈ C, ∃ a one-to-one map mU from a neighborhood a neighborhood U = UA ⊂ C onto
D which is called a local coordinate in U . If two such neighborhooods have a nonepmty intersection,
then the mapping mU ·m−1

V , defined in a subdomain of D is biholomorphic.
4 月 18 日第二段 1 分 26 秒

Example 1.1.

4 月 18 日第二段 4 分 58 秒

Definition 1.1. 全纯映射

4 月 20 日 29 分 40 秒

Example 1.2. 内容...
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2 The genus of a smooth plane curve

4 月 20 日 34 分 0 秒
思路：给定一条次数 n 的光滑曲线，造一个合适的到 P1 的分歧覆盖，数退化的信息，利用

Riemann-Hurwitz 公式，得到亏格与次数之间的关系.

Remark. 一般曲线的亏格也能算，可参考 Kirwan 的 7.3 节.

2.1 证明二

4 月 20 日 1 小时 19 分 42 秒

2.2 定理 2.6 新证

4 月 20 日 1 小时 24 分 20 秒
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3 4 月 25 日第十周周一

Let C be smooth curve.

Definition 3.1. Double tangent

Definition 3.2 (flex/inflection). A point on C is a flex if mult(l ∩C) ⩾ 3, where l tangent at A to
C.

Theorem 3.1. ∃ exactly n2 − n distinct tangents from a point ∈ P2 in general position to C.

证明. Choose a point P ∈ P2 which lies neither on C, nor on double tangents, nor on tangents at
inflection points.

Consider the ramified covering p : C → P1, each of whose ramification points has exactly (n−1)

preimages. By R-H,

3n− n2 = χ(C) = 2n−
k∑
j=1

[n− (n− 1)], k = #
{

ramification points of C p−→ P1
}

Corollary 3.1. From a point in general position on C, there are exactly n2−n−1 distinct tangents
to C.

Remark. For a general point A ∈ C, there are n2 − n− 2 tangents through A beside the one to C
at A.

As n = 3, from a general point A on a smooth cubic c, ∃ 4 tangents.

3.1 j-invariant of smooth cubics

Let C be a smooth cubic in P2.
Fact1: Through each point A of C, there are 4 pairwise distinct tangents to C which differ

from the tangent at A except inflections.

Definition 3.3 (&Fact2). ∀x ∈ C, the quadruple of the four tangents through x to C determines
4 points in the pencil of lines through x, say a, b, c, d ∈ P1 = C ∪∞. Define their cross ratio to be

[a, b, c, d] :=
c− a

c− b
:
d− a

d− b
∈ C\ {0, 1}

which depends on the order of the four points, but not on the coordinates of these points on P1.

Remark. 任意两个坐标系之间都只差一个 mobius 变换吗？

Fact3 Denote λ = [a, b, c, d]. Then

J(λ) :=
(1− λ+ λ2)3

λ2(1− λ)2

does not depend on the order of the four points.
Fact4 Denote by λ(x) the corss ration of the four tangents from x ∈ C to C. Then J : C →

C ∪ {∞} , x 7→ J(λ(x)) is holomorphic and constant, denoted by J(C).
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Remark. Under a projective transformation φ ∈ PGL(3,C) of P2, tangents to x ∈ C goes to
tangents at φ(x) to φ(C).

The quadruple of 4 tangents to x also undergoes a projection transformation from the pencil
of lines through x to the one through φ(x). Hence, J(C) = J(φ(C)), i.e. J(C) is a projective
holomorphic invariant of C.

Fact5 The J-invariant of cubic y2 = x(x− 1)(x− λ), λ ∈ C\ {0, 1}
In particular, if J(λ1 6= J(λ2))(λ1, λ2 ∈ C\ {0, 1}) then the two cubics y2 = x(x − 1)(x − λ1)

and y2 = x(x− 1)(x− λ2) can’t be projectively equivalent.
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4 Hessian and inflection points

Let F (x, y, z) be an irreducible homogenous polynomial of degn ⩾ 2 and A a smooth point on
C : F (x, y, z) = 0.

The tangent line l at A to C has equation x
∂F

∂x
(A) + y

∂F

∂y
(A) + z

∂F

∂z
= 0.

l intersecs C with multiplicity ⩾ 2.

Definition 4.1. A is called a flex of C iff this multiplicity is > 2.
A is called an ordinary flex of C iff this multiplicity is = 3.

Definition 4.2. The Hessian HF of F to be

HF (x, y, z) = det


Fxx Fxy Fxz

Fxy Fyy Fyz

Fxz Fyz Fzz

 ,degHF = 3(n− 2).

Exercise 3.7: A is a flex of C iff HF (A) = 0.
We need a lemma to show it.

Lemma 4.1.

z2HF (x, y, z) = (n− 1)2

∣∣∣∣∣∣∣∣
Fxx Fxy Fx

Fxy Fyy Fy

Fx Fy
nF

n− 1

∣∣∣∣∣∣∣∣
证明. nF = xFx + yFY + zFz

n− 1Fx = xFxx + yFxy + zFxz

Then

zHF (x, y, z) =

∣∣∣∣∣∣∣∣
Fxx Fxy Fxz

Fxy Fyy Fyz

zFxz zFyz zFzz

∣∣∣∣∣∣∣∣
1×x+2×y→3
========== (n−1)

∣∣∣∣∣∣∣∣
Fxx Fxy Fxz

Fxy Fyy Fyz

Fx Fy Fz

∣∣∣∣∣∣∣∣
1×x+2×y→3
===========

(n− 1)2

z

∣∣∣∣∣∣∣∣∣
Fxx Fxy Fx

Fxy Fyy Fy

Fx Fy
nF

(n− 1)

∣∣∣∣∣∣∣∣∣
Solution to Exersics 3.7.

Assume A ∈ {z = 1} ∩ C. Then HF (A) = 0
zA=1⇐⇒

∣∣∣∣∣∣∣∣
Fxx Fxy Fx

Fxy Fyy Fy

Fx Fy 0

∣∣∣∣∣∣∣∣ = 0

⇐⇒ Fxx(Fx)
2 + Fyy(Fy)

2 − 2FxyFxFy

⇐⇒ A is a flex of F (x, y, 1) = 0 in {z = 1} .

Remark. A smooth conic has no flex.
A degn irreducible curve has at most 3n(n− 2) inflection points.
In particular, a smooth cubic has 9 inflection points.
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5 Hyperelliptic curves

Definition 5.1. We call a compact Riemann surface hyperelliptic if its geuns > 1 and it is a
2-sheeted ramified covering of P1.

All ramification points are simple. By RH, # {ramificationpoints} are even, say 2k, then
g(S) = k − 1.

Example 5.1. Let Pn ∈ C[x] be a polynomal of degree n without multiple roots with n ⩾ 3, say
n = 2g + 1 or 2g + 2.

Consider the plane curve given by y2 = Pn(x) in affine chart {z = 1}, d(y2 − Pn(x)) nowhere
vanishes in {z = 1}.

In P2, C is given by y2zn−2 = anx
n + an−1x

nz+ · · ·+ a0z
n, and has point (0 : 1 : 0) at infinity,

which is smooth in C iff n = 3.
We shall modify C to a hyperelliptic Riemann surface. This process is called the Riemann

compactification of C\(0 : 1 : 0) ⊂ {z = 1} = C2
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