topopt-hw

Problem 2: Implement other boundary conditions

Case2

Distributed load

Case2

Comments and Conclusion

Source code

function problem2()
    %% FIXED PARAMETERS
    nelx = 120;      % Fixed number of elements along x-axis
    nely = 20;       % Fixed number of elements along y-axis
    volfrac = 0.5;   % Fixed volume fraction
    penal = 3;       % Fixed penalization factor
    rmin = 4.8;      % Fixed filter radius
    ft = 1;          % Fixed filter type (sensitivity filter)

    %% MATERIAL PROPERTIES
    E0 = 1;
    Emin = 1e-9;
    nu = 0.3;

    %% LOAD AND BOUNDARY CONDITIONS
    load_conditions = {'two_point_loads', 'distributed_load'};
    boundary_conditions = {'only_y', 'both_xy'};
    
    for lc = 1:2
        for bc = 1:2
            %% PREPARE FINITE ELEMENT ANALYSIS
            A11 = [12  3 -6 -3;  3 12  3  0; -6  3 12 -3; -3  0 -3 12];
            A12 = [-6 -3  0  3; -3 -6 -3 -6;  0 -3 -6  3;  3 -6  3 -6];
            B11 = [-4  3 -2  9;  3 -4 -9  4; -2 -9 -4 -3;  9  4 -3 -4];
            B12 = [ 2 -3  4 -9; -3  2  9 -2;  4  9  2  3; -9 -2  3  2];
            KE = 1/(1-nu^2)/24*([A11 A12;A12' A11]+nu*[B11 B12;B12' B11]);
            nodenrs = reshape(1:(1+nelx)*(1+nely),1+nely,1+nelx);
            edofVec = reshape(2*nodenrs(1:end-1,1:end-1)+1,nelx*nely,1);
            edofMat = repmat(edofVec,1,8)+repmat([0 1 2*nely+[2 3 0 1] -2 -1],nelx*nely,1);
            iK = reshape(kron(edofMat,ones(8,1))',64*nelx*nely,1);
            jK = reshape(kron(edofMat,ones(1,8))',64*nelx*nely,1);

            %% DEFINE LOADS
            F = sparse(2*(nely+1)*(nelx+1), 1);
            U = zeros(2*(nely+1)*(nelx+1),1);
            if strcmp(load_conditions{lc}, 'two_point_loads')
                F(2*(nelx/4)*(nely+1)+2,1) = -1;
                F(2*(3*nelx/4)*(nely+1)+2,1) = -1;
            elseif strcmp(load_conditions{lc}, 'distributed_load')
                for i = 1:nelx+1
                    F(2*(i-1)*(nely+1)+2, 1) = 1;
                end
            end

            %% DEFINE SUPPORTS
            if strcmp(boundary_conditions{bc}, 'only_y')
                fixeddofs = [2*(nely+1), 2*(nelx+1)*(nely+1)];
            elseif strcmp(boundary_conditions{bc}, 'both_xy')
                fixeddofs = [2*(nely+1)-1, 2*(nely+1), 2*(nelx+1)*(nely+1)-1, 2*(nelx+1)*(nely+1)];
            end

            alldofs = 1:2*(nely+1)*(nelx+1);
            freedofs = setdiff(alldofs, fixeddofs);

            %% PREPARE FILTER
            iH = ones(nelx*nely*(2*(ceil(rmin)-1)+1)^2,1);
            jH = ones(size(iH));
            sH = zeros(size(iH));
            k = 0;
            for i1 = 1:nelx
                for j1 = 1:nely
                    e1 = (i1-1)*nely+j1;
                    for i2 = max(i1-(ceil(rmin)-1),1):min(i1+(ceil(rmin)-1),nelx)
                        for j2 = max(j1-(ceil(rmin)-1),1):min(j1+(ceil(rmin)-1),nely)
                            e2 = (i2-1)*nely+j2;
                            k = k+1;
                            iH(k) = e1;
                            jH(k) = e2;
                            sH(k) = max(0,rmin-sqrt((i1-i2)^2+(j1-j2)^2));
                        end
                    end
                end
            end
            H = sparse(iH,jH,sH);
            Hs = sum(H,2);

            %% INITIALIZE ITERATION
            x = repmat(volfrac,nely,nelx);
            xPhys = x;
            loop = 0;
            change = 1;
            c_history = [];

            %% START ITERATION
            while change > 0.01
                loop = loop + 1;

                %% FE-ANALYSIS
                sK = reshape(KE(:)*(Emin+xPhys(:)'.^penal*(E0-Emin)),64*nelx*nely,1);
                K = sparse(iK,jK,sK); K = (K+K')/2;
                U(freedofs) = K(freedofs,freedofs)\F(freedofs);

                %% OBJECTIVE FUNCTION AND SENSITIVITY ANALYSIS
                ce = reshape(sum((U(edofMat)*KE).*U(edofMat),2),nely,nelx);
                c = sum(sum((Emin+xPhys.^penal*(E0-Emin)).*ce));
                dc = -penal*(E0-Emin)*xPhys.^(penal-1).*ce;
                dv = ones(nely,nelx);
                c_history = [c_history c];  % Store objective function value

                %% FILTERING/MODIFICATION OF SENSITIVITIES
                if ft == 1
                    dc(:) = H*(x(:).*dc(:))./Hs./max(1e-3,x(:));
                elseif ft == 2
                    dc(:) = H*(dc(:)./Hs);
                    dv(:) = H*(dv(:)./Hs);
                end

                %% OPTIMALITY CRITERIA UPDATE OF DESIGN VARIABLES AND PHYSICAL DENSITIES
                l1 = 0; l2 = 1e9; move = 0.2;
                while (l2-l1)/(l1+l2) > 1e-3
                    lmid = 0.5*(l2+l1);
                    xnew = max(0,max(x-move,min(1,min(x+move,x.*sqrt(-dc./dv/lmid)))));
                    if ft == 1
                        xPhys = xnew;
                    elseif ft == 2
                        xPhys(:) = (H*xnew(:))./Hs;
                    end
                    if sum(xPhys(:)) > volfrac*nelx*nely, l1 = lmid; else l2 = lmid; end
                end
                change = max(abs(xnew(:)-x(:)));
                x = xnew;
            end

           %% PLOT DENSITIES AND OBJECTIVE FUNCTION HISTORY
figure('Position', [100, 100, 1200, 500]);  % 增加图像的宽度,将整张图像拉长

% 调整结构图像的大小和位置
subplot('Position', [0.05, 0.15, 0.4, 0.7]);  % 调整位置和大小 [左, 下, 宽, 高]
colormap(gray);
imagesc(1-xPhys); 
caxis([0 1]); 
axis equal; 
axis off; 
title('Optimized Structure');

% 调整目标函数历史图像的大小和位置
subplot('Position', [0.55, 0.15, 0.4, 0.7]);  % 调整位置和大小 [左, 下, 宽, 高]
plot(1:loop, c_history, '-o', 'LineWidth', 2);  % 使用 -o 添加数据点标记
xlabel('Iteration');
ylabel('Objective Function Value');
title('Objective Function History');

% 保存图像
save_filename = sprintf('result_%s_%s_iter%d_obj%.4f.png', load_conditions{lc}, boundary_conditions{bc}, loop, c);
saveas(gcf, save_filename);
close all;
        end
    end
end