Design Variables, objective function, constraint are the same as Problem 1.
F(2*(nelx/4)*(nely+1)+2,1)=1; F(2*(3*nelx/4)*(nely+1)+2,1)=1;
fixeddofs = [2*(nely+1)-1, 2*(nely+1), 2*(nelx+1)*(nely+1)-1, 2*(nelx+1)*(nely+1)];
fixeddofs = [2*(nely+1), 2*(nelx+1)*(nely+1)];
for i = 1:nelx+1
F(2*(i-1)*(nely+1)+2, 1) = -1;
end
fixeddofs = [2*(nely+1)-1, 2*(nely+1), 2*(nelx+1)*(nely+1)-1, 2*(nelx+1)*(nely+1)];
fixeddofs = [2*(nely+1), 2*(nelx+1)*(nely+1)];
function problem2()
%% FIXED PARAMETERS
nelx = 120; % Fixed number of elements along x-axis
nely = 20; % Fixed number of elements along y-axis
volfrac = 0.5; % Fixed volume fraction
penal = 3; % Fixed penalization factor
rmin = 4.8; % Fixed filter radius
ft = 1; % Fixed filter type (sensitivity filter)
%% MATERIAL PROPERTIES
E0 = 1;
Emin = 1e-9;
nu = 0.3;
%% LOAD AND BOUNDARY CONDITIONS
load_conditions = {'two_point_loads', 'distributed_load'};
boundary_conditions = {'only_y', 'both_xy'};
for lc = 1:2
for bc = 1:2
%% PREPARE FINITE ELEMENT ANALYSIS
A11 = [12 3 -6 -3; 3 12 3 0; -6 3 12 -3; -3 0 -3 12];
A12 = [-6 -3 0 3; -3 -6 -3 -6; 0 -3 -6 3; 3 -6 3 -6];
B11 = [-4 3 -2 9; 3 -4 -9 4; -2 -9 -4 -3; 9 4 -3 -4];
B12 = [ 2 -3 4 -9; -3 2 9 -2; 4 9 2 3; -9 -2 3 2];
KE = 1/(1-nu^2)/24*([A11 A12;A12' A11]+nu*[B11 B12;B12' B11]);
nodenrs = reshape(1:(1+nelx)*(1+nely),1+nely,1+nelx);
edofVec = reshape(2*nodenrs(1:end-1,1:end-1)+1,nelx*nely,1);
edofMat = repmat(edofVec,1,8)+repmat([0 1 2*nely+[2 3 0 1] -2 -1],nelx*nely,1);
iK = reshape(kron(edofMat,ones(8,1))',64*nelx*nely,1);
jK = reshape(kron(edofMat,ones(1,8))',64*nelx*nely,1);
%% DEFINE LOADS
F = sparse(2*(nely+1)*(nelx+1), 1);
U = zeros(2*(nely+1)*(nelx+1),1);
if strcmp(load_conditions{lc}, 'two_point_loads')
F(2*(nelx/4)*(nely+1)+2,1) = -1;
F(2*(3*nelx/4)*(nely+1)+2,1) = -1;
elseif strcmp(load_conditions{lc}, 'distributed_load')
for i = 1:nelx+1
F(2*(i-1)*(nely+1)+2, 1) = 1;
end
end
%% DEFINE SUPPORTS
if strcmp(boundary_conditions{bc}, 'only_y')
fixeddofs = [2*(nely+1), 2*(nelx+1)*(nely+1)];
elseif strcmp(boundary_conditions{bc}, 'both_xy')
fixeddofs = [2*(nely+1)-1, 2*(nely+1), 2*(nelx+1)*(nely+1)-1, 2*(nelx+1)*(nely+1)];
end
alldofs = 1:2*(nely+1)*(nelx+1);
freedofs = setdiff(alldofs, fixeddofs);
%% PREPARE FILTER
iH = ones(nelx*nely*(2*(ceil(rmin)-1)+1)^2,1);
jH = ones(size(iH));
sH = zeros(size(iH));
k = 0;
for i1 = 1:nelx
for j1 = 1:nely
e1 = (i1-1)*nely+j1;
for i2 = max(i1-(ceil(rmin)-1),1):min(i1+(ceil(rmin)-1),nelx)
for j2 = max(j1-(ceil(rmin)-1),1):min(j1+(ceil(rmin)-1),nely)
e2 = (i2-1)*nely+j2;
k = k+1;
iH(k) = e1;
jH(k) = e2;
sH(k) = max(0,rmin-sqrt((i1-i2)^2+(j1-j2)^2));
end
end
end
end
H = sparse(iH,jH,sH);
Hs = sum(H,2);
%% INITIALIZE ITERATION
x = repmat(volfrac,nely,nelx);
xPhys = x;
loop = 0;
change = 1;
c_history = [];
%% START ITERATION
while change > 0.01
loop = loop + 1;
%% FE-ANALYSIS
sK = reshape(KE(:)*(Emin+xPhys(:)'.^penal*(E0-Emin)),64*nelx*nely,1);
K = sparse(iK,jK,sK); K = (K+K')/2;
U(freedofs) = K(freedofs,freedofs)\F(freedofs);
%% OBJECTIVE FUNCTION AND SENSITIVITY ANALYSIS
ce = reshape(sum((U(edofMat)*KE).*U(edofMat),2),nely,nelx);
c = sum(sum((Emin+xPhys.^penal*(E0-Emin)).*ce));
dc = -penal*(E0-Emin)*xPhys.^(penal-1).*ce;
dv = ones(nely,nelx);
c_history = [c_history c]; % Store objective function value
%% FILTERING/MODIFICATION OF SENSITIVITIES
if ft == 1
dc(:) = H*(x(:).*dc(:))./Hs./max(1e-3,x(:));
elseif ft == 2
dc(:) = H*(dc(:)./Hs);
dv(:) = H*(dv(:)./Hs);
end
%% OPTIMALITY CRITERIA UPDATE OF DESIGN VARIABLES AND PHYSICAL DENSITIES
l1 = 0; l2 = 1e9; move = 0.2;
while (l2-l1)/(l1+l2) > 1e-3
lmid = 0.5*(l2+l1);
xnew = max(0,max(x-move,min(1,min(x+move,x.*sqrt(-dc./dv/lmid)))));
if ft == 1
xPhys = xnew;
elseif ft == 2
xPhys(:) = (H*xnew(:))./Hs;
end
if sum(xPhys(:)) > volfrac*nelx*nely, l1 = lmid; else l2 = lmid; end
end
change = max(abs(xnew(:)-x(:)));
x = xnew;
end
%% PLOT DENSITIES AND OBJECTIVE FUNCTION HISTORY
figure('Position', [100, 100, 1200, 500]); % 增加图像的宽度,将整张图像拉长
% 调整结构图像的大小和位置
subplot('Position', [0.05, 0.15, 0.4, 0.7]); % 调整位置和大小 [左, 下, 宽, 高]
colormap(gray);
imagesc(1-xPhys);
caxis([0 1]);
axis equal;
axis off;
title('Optimized Structure');
% 调整目标函数历史图像的大小和位置
subplot('Position', [0.55, 0.15, 0.4, 0.7]); % 调整位置和大小 [左, 下, 宽, 高]
plot(1:loop, c_history, '-o', 'LineWidth', 2); % 使用 -o 添加数据点标记
xlabel('Iteration');
ylabel('Objective Function Value');
title('Objective Function History');
% 保存图像
save_filename = sprintf('result_%s_%s_iter%d_obj%.4f.png', load_conditions{lc}, boundary_conditions{bc}, loop, c);
saveas(gcf, save_filename);
close all;
end
end
end